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Abstract: In traditional studies on grassland degradation drivers, researchers often lacked
the flexibility to selectively consider driving factors and quantitatively depict their con-
tributions. Interpretable machine learning offers a solution to these challenges. This
study focuses on Inner Mongolia, China, incorporating four categories and sixteen specific
driving factors, and employing four machine learning techniques (Logistic Regression,
Random Forest, XGBoost, and LightGBM) to investigate regional grassland changes. Using
the SHAP approach, contributions of driving factors were quantitatively analyzed. The
findings reveal the following: (1) Between 2015 and 2020, Inner Mongolia experienced
significant grassland degradation, with an affected area reaching 12.12 thousand square
kilometers. (2) Among the machine learning models tested, the LightGBM model exhibited
superior prediction accuracy (0.89), capability (0.9), and stability (0.76). (3) Key factors
driving grassland changes in Inner Mongolia include variations in rural population, live-
stock numbers, average temperatures during the growth season, peak temperatures, and
proximity to roads. (4) In eastern and western Inner Mongolia, changes in rural popula-
tion (31.4%) are the primary degradation drivers; in the central region, livestock number
changes (41.1%) dominate; and in the southeast, climate changes (19.3%) are paramount.
This work exemplifies the robust utility of interpretable machine learning in predicting
grassland degradation and offers insights for policymakers and similar ecological regions.

Keywords: machine learning; grassland degradation; driving factors; SHAP method;
climate change

1. Introduction
Grasslands represent the largest ecosystem type in terms of terrestrial surface area,

covering 37% of the global land area [1]. Over the past two decades, approximately 50%
of global grasslands have experienced degradation, with 5% undergoing severe degra-
dation [2]. In China, degraded grasslands have reached an area of 86.67 × 104 km2 [3],
which constitutes about 22.7% of China’s total grassland area [4]. However, some studies
have also shown that, against the background of the overall degradation of grasslands in
China, the vegetation cover in some parts of China has been increasing, contributing to
25% of the global increase in leaf area index [5]. Grassland degradation reduces vegetation
cover, leading to decreased grassland productivity, loss of biodiversity, and reduced species
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richness; at the same time, grassland degradation also has a great impact on soil nutrient
status, water content capacity, and soil structure [6–8]. Conversely, the improvement of
grassland vegetation structure and cover is conducive to the improvement and enhance-
ment of grassland ecosystem services, thus supporting the sustainability of the regional
ecological–economic system. In conclusion, grassland changes can have a significant im-
pact on the structure, function and service level of the ecosystem, and the sustainable
development of the regional economy and society [9–11].

In order to analyze the temporal and spatial processes of grassland evolution, re-
searchers use a series of satellite remote sensing parameter indicators for monitoring [12–14].
These indicators include net primary production (NPP), normalized difference vegetation
index (NDVI), fractional vegetation cover (FVC), above-ground biomass (AGB), and so
on. These indicators can reflect the status of grassland ecosystems from different dimen-
sions, such as photosynthetic activity of grassland, vegetation growth and carbon storage
of ecosystems, and other characteristics. In particular, NPP, as an indicator of grassland
ecosystems, reflects key attributes such as vegetation cover, height, and photosynthetic
capacity, offering insights into the overall status of grassland ecosystems, though it does
not fully capture all of their multidimensional characteristics [15–17]. The analysis of
grassland NPP change and its influencing elements can portray the evolution of the grass-
land ecosystem and reveal the driving elements of grassland evolution. Therefore, the
exploration of the trend of grassland NPP change and its driving mechanism is the key
to repairing and managing degraded grassland ecosystems, maintaining and improving
the structure and service level of excellent grassland ecosystems, and promoting regional
sustainable development.

In traditional studies targeting grassland NPP changes, researchers generally use
ecological process simulation, dynamics simulation, and other methods to simulate the
temporal–spatial change process of grassland NPP. For example, in ecosystem simulation
(such as CASA model, GLOPEM model [18–20]), high temporal and spatial resolution
and high precision estimation of NPP can be realized based on the vegetation growth
mechanism combined with satellite remote sensing observation data. In the simulation of
land change dynamics (such as CA–Markov model, FLUS model), the integrated effects
of natural and human elements can be considered comprehensively, so as to realize the
estimation of the changes in the NPP of the grassland on the basis of the dynamic simulation
of land use [21,22]. Obviously, the above two methods can only simulate the temporal–
spatial changes of NPP based on the key elements (such as natural geographic and climatic
factors) that have already been identified by the model and the quantitative relationship
between the key elements and NPP. Researchers cannot introduce new key elements
(such as economic activities), discover new patterns of NPP change by analyzing the
relationship between key elements and NPP, and construct new simulation and prediction
models. These shortcomings affect the comprehensiveness and effectiveness of the analysis
of the grassland change driving mechanism. For this reason, some researchers have
applied correlation analysis, regression analysis and residual analysis to explore the key
driving factors driving grassland NPP and NDVI and their relative contributions [23–25].
Although these studies were able to freely select multiple driving factors and analyze
the relationship between the driving factors and the changes of NPP and NDVI, the
assumptions of correlation and regression analyses were too ideal, and it was difficult to
simulate the nonlinear changes of NPP, and even more difficult to quantitatively give the
contribution of each driving factor to the changes of NPP.

Machine learning (ML) methods provide a new possible way to overcome the above
problems. In classical ML models, ML is increasingly used to recognize nonlinear relation-
ships because the models do not require a priori expert knowledge and can extract patterns
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and regularities directly from the data [26–28]. However, the shortcoming of classical ML
models is that while ML relaxes the strict assumptions inherent in traditional models, it
does so at the cost of not knowing the specific contributions of the parameters; the ML
model becomes a “black box” [29]. Therefore, the development of explainable artificial
intelligence (AI) has become the key to solving the problems of trust, transparency, causality,
fairness, and visualization in classical AI models [30,31]. In this process, ML researchers
have proposed the use of the SHAP (Shapely Additive Explanation) method to explain
the results of ML, which has developed into explainable ML. For example, He et al. [32]
used the Random Forest Model and SHAP method for quantitative precipitation estimation
(QPE) based on satellite remote sensing, which provided an important basis for selecting
input variables for satellite-based QPE. Li et al. [33] analyzed some key elements affecting
the temporal and spatial variations of atmospheric particulate matter (PM2.5) in Zhejiang
Province, China, based on the Random Forest (RF) algorithm and the SHAP model, and
found that the relative importance of industrial emissions decreased. To summarize, SHAP,
as an ML model interpretation method, has been increasingly applied in the field of geo-
ecology, but no exemplary application of the SHAP method in the analysis of the grassland
change driving mechanism has been seen yet.

The factors driving grassland change are extremely complex and diverse. Researchers
around the world have analyzed the variables that characterize grassland change at dif-
ferent spatial and temporal scales, and have conducted screening, correlation, and sensi-
tivity analyses of the driving factors that drive those variables. These studies have laid
the foundation for systematic and in-depth research on grassland change. For example,
Lyu et al. [34] found that grazing exacerbated the degradation of grasslands in Xilinhot,
while precipitation promoted the recovery of grasslands using the constraint line method.
Zhou et al. [35] found that human activities and climate change were the main drivers of
grassland degradation in China, with similar contribution rates. Zhao et al. [36] found that
warm and wet climates increased diversity and warm and dry climates decreased diversity
in Horqin, Inner Mongolia from 1992 to 2006, and that light grazing increased the richness
and diversity of grasslands. Batunacun et al. [37] studied land degradation in Xilingol
between 1975 and 2015 and found that the dominant elements driving land degradation
change over time. In general, the main driving elements of grassland change may include
various elements such as climate change, livestock structure, grazing intensity, grassland
reclamation, urban development, tourism and settlement, transportation construction, and
spatial relationships between elements. However, there are some problems in the existing
studies, which are summarized as follows: the depth of the existing studies is not deep
enough to trace the specific factors, and most of the studies fail to trace back to the specific
and clear types of human activities and the time period of the activities; in terms of the
selection of driving factors and the quantitative determination of the contribution rate of
driving factors, there are also problems in the selection of driving factors, the doubtful
applicability of the driving model, and the low degree of quantitative determination of the
contribution rate.

To address the above issues, this study focuses on Inner Mongolia as the study area. It
examines specific drivers of grassland change within the domains of geography, meteo-
rology, ecology, and socioeconomic development. Multiple machine learning algorithms
are applied to build a prediction model for NPP based on time-series data from 2015 to
2020. The study then compares and evaluates the performance of different ML methods
in predicting grassland change. Finally, the SHAP method is used to interpret the ML
results and identify key influencing factors. This study attempts to answer the following
scientific questions:
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1. What is the basic pattern of NPP change in Inner Mongolian grasslands from 2015 to
2020? What are the main driving factors and their contribution rates?

2. Which ML model performs best in predicting grassland NPP? How applicable is it?

2. Study Area and Data
2.1. Study Area

The Inner Mongolia Autonomous Region (Figure 1) is located in the north of China
and is a typical distribution area of temperate steppe in Eurasia. The Inner Mongolia
Autonomous Region extends from northeast to southwest; it is about 2400 km long from
east to west and spans more than 1700 km from north to south, with a total land area of
1.183 × 106 square kilometers. The landform of the region is dominated by high plains,
with mountainous hills such as the DaXingAnLing Mountains in the east. Most of the
region is above 1000 m above sea level. As of February 2025, the Autonomous Region has
nine prefecture-level cities and three leagues under its jurisdiction.
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Figure 1. The location and topography map of Inner Mongolia. HL: Hulunbeier, XA: Xing’an,
TL: Tongliao, CF: Chifeng, XL: Xilingol, UL: Ulanqab, BT: Baotou, HH: Hohhot, BY: Bayannur,
OR: Ordos, WH: Wuhai, and AL: Alashan.

The study area has a typical mesothermal continental monsoon climate. From east
to west, the climate zone gradually transitions from humid and semi-humid to semi-arid
and arid. The average annual precipitation total for many years has been between 50 and
500 mm, and the annual rainfall gradually decreases from the southeast to the northwest.
In summer, the average temperature of the whole region is around 25 ◦C; in winter, the
lowest temperature in the central and western regions is below −20 ◦C, and the lowest
temperature in the eastern regions is below −50 ◦C. Deciduous and coniferous forests
are distributed in the northeast Daxinganling region, and deserts and bare rocky gravel
lands with huge areas are distributed in the western Alxa League, Bayannur city and other
regions; the southern edge of the region is an agricultural and pastoral transition zone,
with cultivated land and grasslands distributed; the rest of the region is a type of grassland
cover. From east to west, the grassland type gradually transitions from temperate meadow
grassland and temperate typical grassland to temperate desert grassland, temperate desert
steppe, and temperate desert and other zonal grassland types.
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2.2. Data Sets and Their Pre-Processing

NPP is used to characterize the status and quality of grassland ecosystems. The NPP
data for 2015–2020 were obtained from the Terra Net Primary Production Gap-Filled Yearly
Global 500m (MODIS/006/MOD17A3HGF) dataset [38]. The trend of NPP was used
to characterize the improvement or degradation of grassland ecosystems: an increasing
trend of NPP indicates improvement of grassland ecosystems; a decreasing trend of NPP
indicates degradation of grassland ecosystems.

In order to analyze the driving mechanism of grassland change, four categories and
sixteen specific elements, including geographical factors, meteorological factors, spatial
factors and socioeconomic factors from 2015 to 2020, were selected in this study (Table 1).
In particular, for geographic and spatial elements, we used their metrics (such as height and
distance) to measure the magnitude of the driving force; for the two categories of elements,
such as climate change and economic and social development, we used their trends (slope
of change) during the period of 2015–2020 to measure the magnitude of the driving force.

Table 1. Driving factors and the response factor of the grassland.

Factors Name Definition/Content Data Sources

Response NPP Net primary production
MODIS/061/MOD17A3HGF

(https://lpdaac.usgs.gov/products/mod1
7a3hgfv061/ (accessed on 20 January 2023))

Geographical
factors

Elevation Height above sea level SRTM Digital Elevation Data Version 4
(https://srtm.csi.cgiar.org/ (accessed on

15 January 2023))Slope Slope of terrain

Meteorological
factors

AvgTMP Average temperature of the growing season
(May–September) ECMWF/ERA5/MONTHLY

https://cds.climate.copernicus.eu/cdsapp#
!/dataset/reanalysis-era5-single-levels

(accessed on 14 February 2023)

MaxTMP Maximum temperature of the growing
season (May–September)

PDSI Palmer drought severity index of the
growing season (May–September)

IDAHO_EPSCOR/TERRACLIMATE
https://www.climatologylab.org/

terraclimate.html (accessed on
14 February 2023)

PREC Average precipitation of the growing season
(May–September)

PET Potential evapotranspiration of the growing
season (May–September)

Soil_Mois
Soil moisture index of the growing season

(May–September), derived using a
one-dimensional soil water balance model

Spatial factors

Dist_Water Distance from a specific point to the
nearest waterbody

OSM data
https://www.openstreetmap.org/

Dist_Rode Distance from a specific point to the
nearest road

Dist_Resid Distance from a specific point to the
nearest resident

Resource and Environmental Science and
Data Centre, CAS

http://www.resdc.cn (accessed on
5 March 2023)

Socioeconomic
factors

POP Total population

Inner Mongolia Autonomous Region Bureau
of Statistics

http://tj.nmg.gov.cn/ (accessed on
14 February 2023)

Rural_POP Rural population
GDP Gross domestic production

GDP1 The primary industry, mainly referring to the
agricultural industry in China.

N_Herd
The number of main livestock in the Inner

Mongolia region, including cattle, horses and
sheep, is converted to standard sheep units.

POP Total population

https://lpdaac.usgs.gov/products/mod17a3hgfv061/
https://lpdaac.usgs.gov/products/mod17a3hgfv061/
https://srtm.csi.cgiar.org/
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels
https://www.climatologylab.org/terraclimate.html
https://www.climatologylab.org/terraclimate.html
https://www.openstreetmap.org/
http://www.resdc.cn
http://tj.nmg.gov.cn/
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(1) Geographical factors: DEM and slope. The DEM is NASA SRTM V3 data with a
resolution of 30 m. With the support of the GEE platform, the NEAREST method was
applied to resample the above index data and process them into raster files with 1
km resolution. On this basis, the terrain slope at 1 km resolution was calculated from
the DEM.

(2) Meteorological factors: six in total, all of which are relevant indicators for the
growing season (May–September). They are precipitation (PREC), average tem-
perature (AvgTMP), monthly maximum temperature (MaxTMP), potential evapo-
transpiration (PET), maximum drought index (PDSI), and average soil moisture
(Soil_Mois). Among them, the temperature metrics were calculated from the monthly
mean and maximum temperatures at 2 m above ground provided by the ERA5
dataset (ECMWF/ERA5/MONTHLY). Other indicators were calculated from the
data provided by the Terraclimate dataset (IDAHO_EPSCOR/TERRACLIMATE). The
above data were processed into 1 km resolution raster files with the support of the
GEE platform.

(3) Spatial factors: there are three in total, namely, distance from water bodies
(Dist_Water), distance from roads (Dist_Road), and distance from settlements
(Dist_Resid). The water body and road data were obtained from OSM data, and
the settlement data were from the China Multi-Period Land Use Land Cover Re-
mote Sensing Monitoring dataset (CNLUCC) provided by the Resource and Envi-
ronment Data Center of the Institute of Geography, Chinese Academy of Sciences
(http://www.resdc.cn). The shortest Euclidean distance from each point in space to
the above points (settlement points) and lines (road and water body boundaries) was
calculated by applying the Near method of ArcGIS at 1 km resolution.

(4) Socioeconomic factors: five in total, namely, gross domestic product (GDP), primary
industry output (GDP1), total population (POP), rural population (Rural_POP), and
number of livestock (N_Herd) (including cattle, sheep, and horses, which are con-
verted according to the standard to be expressed as a standard sheep unit).

Population density data were obtained from Worldpop data (https://hub.worldpop.
org/ (accessed on 13 February 2023)) [39]. The data were spatialized from census data,
combined with remote sensing imagery, applying the Random Forest method. GDP, gross
primary industry product, rural population, and livestock data were obtained from year-
book data provided by the Inner Mongolia Bureau of Statistics (http://tj.nmg.gov.cn/
(accessed on 18 December 2022)).

The Theil–Sen Median method is a robust nonparametric statistical method for trend
calculation [40], which has the advantages of high computational efficiency and insensitivity
to measurement errors and outlier data, and is suitable for trend analysis of time series
data. Its formula is as follows:

β = Median
( xj − xi

j − i

)
∀j > i (1)

where Median() denotes to take the median value. xj and xi represent different years of
data, respectively, and j and i are the year. If β is greater than or equal to 0, it indicates that
the factor is increasing or unchanged, and if β is negative, it indicates that the predictor
is decreasing. For Theil–Sen Median change analysis, it is necessary to apply the Mann–
Kendall (MK) method to test the significance of the change. The Mann–Kendall (MK)
test is a nonparametric test of trend in time series. The MK method does not require the
measurements to follow a normal distribution, is unaffected by missing values and outliers,
and is suitable for long time series data for trend significance testing.

http://www.resdc.cn
https://hub.worldpop.org/
https://hub.worldpop.org/
http://tj.nmg.gov.cn/
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When using the ML model to carry out the predictive analysis, the dataset training
labels were denoted as 0 for image elements where the grassland was stable and unchanged
or improved (i.e., unchanged or increased by the MK test of the NPP), and 1 for image
elements where the grassland was degraded (i.e., declined by the MK test of the NPP). For
the two types of elements such as climate change, economic and social development (i.e.,
AvgTemp, MaxTMP, PDSI, PREC, PET, Soil_Mois, GDP, GDP1, POP, Rural_POP, N_Herd,
etc.) and changes in grassland ecological response factors (NPP), the authors applied the
Theil–Sen Median method to calculate the 2015–2020, raster-point-by-point, changes in
these elements (1 km2) change slopes.

Most of the above data processing was performed under Matlab 2021b support, and
the training data extraction was carried out under ArcGIS 10.3.

3. Research Methods
3.1. Technology Route

The technical route of the study is shown in Figure 2.
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First, 15,000 points were randomly generated within the study area with the support
of the ArcGIS platform. From this, the values of NPP and other driving elements were
extracted for these 15,000 points, from 2015 to 2020.

Then, out of the above 15,000 points, 75% (11,250 points) and 25% (3750 points) of
them were used as training data and validation data, respectively. Four models, including
LR, RF, XGBoost, and LightGBM, were selected to carry out the training and accuracy
assessment of the ML models and to identify the best ML model for predicting the changes
of NPP in Inner Mongolia grassland.

Then, using the best ML model identified in the previous step, the SHAP interpreter
was applied to rank the importance of the driving factors driving grassland changes;
analysis and spatial mapping were conducted at the image element scale as well as the
regional scale for the driving and dominant factors driving grassland changes in the
study area.

3.2. ML Models

A total of four ML methods are explored in this study, namely, Logistic Regression
(LR), RF, XGBoost, and LightGBM.
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LR is a linear method that is widely used to model land use and the analysis of the
driving elements of land use change. The LG optimization parameters used in this study
are enalty = “l2”, solver = “liblinear”, C = 1, and max_iter = 1000.

Random Forest (RF) is an integrated learning algorithm based on decision trees pro-
posed by Breiman [41], which improves classification accuracy by constructing multiple de-
cision trees and synthesizing their predictions. Previous researchers have also carried out a
lot of research work on the study of grassland degradation using Random Forests [42–44]. In
this study, the RF model uses the following parameters: n_estimators = 600, max_depth = 20,
min_samples_leaf = 20, random_state = 10, and n_jobs = −1.

The XGBoost algorithm is an algorithm based on Boosting idea and GBDT proposed
by Chen and Guestrin [45]. The XGBoost algorithm limits overfitting, minimizes train-
ing losses, and reduces classification errors when developing the final model. For this
study, the XGBClassifier used the following parameters: learning_rate = 0.1, ax_depth = 5,
n_estimater = 300, min_child_weight = 3, and lambda = 10.

The LightGBM algorithm is an optimization model of XGBoost with improvements
in information gain, decision tree construction, and feature parallelism. Compared to
XGBoost, LightGBM occupies less memory in the operation and is relatively faster. In
this study, the LightGBM classifier uses the following parameters: learning_rate = 0.1,
num_leaves = 60, min_sum_hessian_in_leaf = 6, and lambda_l1 = 0.1.

All of the above modeling algorithms are carried out in the Python 3.7, Jupyter
notebook platform and supported by XGBoost library, LightGBM library and Sklearn
library. The above models, parameter schemes, basic data, and resultant data involved
in this study have been uploaded to the Zenodo platform (https://zenodo.org/10.5281/
zenodo.14833139). Readers can download and validate them by themselves.

3.3. Shapley Additive Explanations (SHAP) Analysis

Although most ML algorithms have a built-in feature importance ranking algorithm,
this feature ranking algorithm only takes into account the influence of each predictor on
the node splits or the predicted values and does not give a judgment on the positivity or
negativity. Compared with feature importance, SHAP value makes up for this deficiency.
The SHAP value not only gives the degree of importance of the variable, but also gives the
positivity or negativity of the impact [46].

Specifically, the SHAP interpreter combines the values of each feature into a set
of feature subsets and calculates the contribution of each feature subset to the model
prediction results, thus obtaining a Shapley value for each feature. The SHAP value can be
interpreted as the contribution of the feature to the model prediction results and can also
be used to visualize and interpret the prediction results of an ML model. The mean of the
absolute SHAP values for each feature over the overall sample represents the importance
of that feature: the larger the mean SHAP value, the more important the feature is, and
the larger the contribution of the change in feature value in driving the change in the
dependent variable. In a SHAP plot, a Shapley value greater than 0 indicates that the
factor has a positive contribution; a Shapley value less than 0 indicates that the factor has a
negative contribution.

3.4. Validation of the Model

In the study, the authors used data from 11,250 points to carry out the training of the
ML model and used data from another 3750 points as the accuracy validation dataset. The
authors selected five metrics, precision, recall, accuracy, F1-measure, and Kappa coefficient,
as the precision evaluation metrics of the model. Among them, precision, accuracy and
F1-Score, reflect the accuracy of model prediction; recall reflects the predictive ability of

https://zenodo.org/10.5281/zenodo.14833139
https://zenodo.org/10.5281/zenodo.14833139
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the model; and Kappa reflects the stability of the model. The above five indicators have
been widely used in ML research, and this paper will not repeat the specific formula of
each indicator [47].

4. Analysis of Results
4.1. Spatial Distribution Patterns of Grassland Change

The changing trend of grassland in Inner Mongolia is shown in Figure 3. In
2015, based on MODIS land cover data, the area of grassland in the study area was
6.897 × 105 square kilometers, accounting for 58.4% of the national land area of Inner
Mongolia. From 2015 to 2020, the total area of grassland undergoing changes was about
4.384 × 105 square kilometers. Among them, the area of NPP increase (NPP increase
and passed the significance test, NPP increase but did not pass the significance test)
reached 3.171 × 105 square kilometers, and the area of NPP decrease (NPP decrease and
passed the significance test, NPP decrease but did not pass the significance test) reached
1.212 × 105 square kilometers.
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Figure 3. Change tendency of grassland NPP in Inner Mongolia from 2015 to 2020. Grassland areas
with NPP change slope thresholds of 0–0.05 were designated as “No Changes” areas, and areas with
NPP change slopes greater than 0.05 were designated as “Increase” areas; of these, areas that passed
the MK significance test were designated as “Significant Increase” areas. Regions where the slope
of NPP change is less than 0 are “Decrease” regions, and those that pass the MK significance test
are “Significant Decrease” regions. Points A, B, C, D are four sampling sites for detail analyses in
Section 4.4.

The NPP decrease in the eastern region is higher than that in the central and western
regions, and the NPP decrease in the southern region is higher than that in the northern
region. In terms of administrative regions, the more seriously degraded grassland areas
are: Tongliao city, Chifeng city, Wuhai city, Ordos city and Hohhot city, and the proportion
of NPP reduction to the grassland area in the respective administrative regions is 44.6%,
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25%, 20.2%, 20.1%, and 17.6%, respectively. Grassland productivity improved in Ulanqab,
Baotou, Hulunbeier, Xing’an, and Xilinguole; the proportions of the area with elevated
grass NPP to the area of grassland in their respective administrative districts were 69%,
66.7%, 65.8%, 56.7%, and 43%, respectively.

4.2. Comparison of Prediction Accuracy of ML Models

Based on the accuracy validation on 3750 random sample points, the results of the
accuracy assessment of the four models in three aspects, including model prediction
accuracy, prediction ability and model stability, can be obtained (Table 2). The results show
the following:

Table 2. Predicting the effects comparison among four different ML models.

Precision Accuracy F1-Score Recall Kappa

LR 0.76 0.76 0.7 0.65 0.5
XGBoost 0.85 0.86 0.84 0.86 0.71

RF 0.85 0.87 0.84 0.83 0.72
LightGBM 0.89 0.88 0.9 0.9 0.76

In the accuracy of model results (precision, accuracy and F1-Score), LightGBM has the
best performance, followed by RF and XGBoost, and LR has the worst performance. In
terms of model predictive power (Recall), LightGBM performs the best, followed by RF
and XGBoost, and LR has the worst recall. In terms of model stability (Kappa), LightGBM
and XGBoost models perform the best, followed by the RF model and the LR model is the
worst. Taken together, LightGBM has higher prediction accuracy, prediction ability, and
stability, as well as the advantages of a more concise structure and higher computational
efficiency. Therefore, based on the current natural ecological environment of the study area
and the model parameterization scheme, the LightGBM model becomes the best model for
simulating and predicting NPP changes.

In the subsequent study, the authors use the SHAP method to carry out the analysis of
the role mechanism and contribution rate of each factor to the LightGBM simulation results.

4.3. Driving Factors and Mechanism

Using the SHAP analysis method, the contribution of each factor in the LightGBM
model results can be analyzed, which can be mapped out by the influencing factors and
their degree of influence on all grass image elements in the study area, so as to obtain the
ability of each parameter to influence the final results (Figure 4).

The vertical axis orders the features by the sum of the SHAP values of all samples.
The closer to the top, the greater the influence of the feature on the NPP prediction. The
horizontal axis is the distribution of SHAP values (the influence of the feature on the model
output), which indicates the nature of the feature’s influence and its magnitude; the right
side (SHAP > 0) indicates that the feature has a positive influence on the prediction of the
NPP change, which is a facilitating effect; the left side (SHAP < 0) indicates that the feature
has a negative influence on the prediction of the NPP change, which is an inhibiting effect.
Each point in the figure represents a sample, and the color of the point indicates the high or
low value of the feature, with red corresponding to high values and blue corresponding to
low values.

As seen in Figure 4, from top to bottom, changes in rural population size (Rural_POP),
changes in livestock size (N_Herd), changes in average growing season temperature
(AvgTMP), changes in maximum growing season temperature (MaxTMP), and distance to
road (Dist_Road) are the most important elements influencing the degradation of NPP in
Inner Mongolia during the period of 2015–2020.
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In terms of economic and social development, the majority of the region is char-
acterized by an increase in rural population (red pixels), with a small number of areas
experiencing a decrease in rural population (blue pixels); the region is characterized by an
increase in the number of livestock (red pixels), with a small number of areas experiencing
a decrease in the number of livestock (blue pixels). The figure shows that the increase in
rural population and livestock number have an inhibiting effect on grassland degradation,
while the decrease in rural population and livestock number have a promoting effect on
grassland degradation. This result is not consistent with the general understanding. We
hypothesize that the labor efficiency and output of farming is higher relative to the labor
efficiency and output of livestock. As a result, the increased rural population, as well
as part of the population previously engaged in animal husbandry, has mainly entered
farming, which in turn has reduced the pressure on the grasslands from people’s livelihood
problems. On the other hand, the livestock populations of interest in this study include a
wide range of livestock such as cattle, sheep, horses, etc., and changes in the populations of
the different types of livestock may be of greater significance to changes in the quality of
the grasslands.

In terms of regional climate change, most parts of the study area showed increased
average growing season temperature (red pixels) and increased maximum growing season
temperature (red pixels). An increase in the average growing season temperature (AvgTMP)
inhibits grassland degradation, while an increase in the maximum growing season tem-
perature (Max_TMP) promotes grassland degradation. An increase in AvgTMP usually
means a longer growing season, which inhibits grassland degradation and is conducive
to grassland improvement; whereas an increase in Max_TMP usually means the occur-
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rence of extreme high temperatures, which can cause grassland drought, which causes
grassland degradation.

In terms of spatial factor relationships, the presence of roads increases grassland
degradation. The further away from the road (Dist_Road), the less prone to degradation,
while the closer to the road (smaller Dist_Road), the more prone to degradation. This is
related to the fact that pastoralists in the study area often graze along the narrow strip from
the road to the pasture fence or migrate their livestock along that narrow strip.

4.4. Spatial Differences in Driving Mechanisms of Grassland Change

It is found that the driving mechanism of grassland change (key driving factors and
their contribution rates) will be significantly different with the geographic location at the
like metric scale (Figure 5). The four points located in Hulunbeier city and Xilingol League,
respectively, (see Figure 3 for locations) are illustrated as follows:
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degraded grasslands in Xilingol and Hulunbeier, respectively; (C,D) are undegraded grasslands in
Xilingol and Hulunbeier, respectively. Blue represents inhibition, red represents facilitation, and the
length of the arrow represents the contribution.

At Point A, based on MODIS NPP time series data, it was shown that grassland
degradation occurred when the NPP was 0.3351 kg·C/m2 in 2015 and decreased to
0.3183 kg·C/m2 in 2020. The driving mechanism analysis then showed that from 2015
to 2020, the decrease in rural population (−1.91), the decrease in average tempera-
ture (−0.2486), the distance from settlements (1149.4829 m), the distance from roads
(9261.8618 m), the decrease in total population (−0.0204), and the elevation in GDP (0.12)
were elements that had a grassland degradation promotion; the increase in livestock popu-
lation (Theil–Sen fitted slope value of 0.1843) and specific altitude (1029.0 m) were elements
that had an inhibitory effect on grassland degradation. The combined effect resulted in an
expected value of 0.64 for the probability of a decrease in NPP, i.e., grassland degradation;
the predicted results were consistent with reality.
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At Point B, based on MODIS NPP time series data, it is shown that grassland degra-
dation occurs with an NPP of 0.2338 kg·C/m2 in 2015 and 0.2227 kg·C/m2 in 2020. The
driving mechanism analysis, on the other hand, showed that from 2015 to 2020, the de-
creased rural population (−2.65), the distance from settlements (3146.0820 m), the distance
from roads (7808.8143 m), the increased GDP (0.3), the altitude (1436 m), and the increased
total population (0.421) were the elements that increased the expectation of grassland
degradation, while the increased number of livestock (0.3037) and decreased PDSI (−0.104)
decreased the expectation of grassland degradation. The combined effect results in an
expected probability of 1.02 for a decrease in NPP, i.e., grassland degradation; the predicted
results are consistent with reality.

At Point C, based on MODIS NPP time series data, it was shown that the NPP was
0.1832 kg·C/m2 in 2015 and 0.202 kg·C/m2 in 2020, and the grassland did not degrade, but
rather improved. The analysis of driving mechanisms, on the other hand, showed that the
decrease in average temperature (−0.3377), the distance from the settlement (126.5657 m),
the increase in GDP (0.5), and the decrease in the total population (−0.0827) in the period of
2015–2020 increased the expectation of degradation of the grassland, whereas the decreased
rural population (−1.16), the increased number of livestock (0.9), and the altitude (1022 m)
were factors that decreased the expectation of grassland degradation. As a result of these
factors, the expected value of the probability of a decrease in NPP reaches −0.99, i.e., no
grassland degradation; the predicted results are consistent with reality.

At Point D, based on MODIS NPP time-series data, it was shown that the NPP was
0.1898 kg·C/m2 in 2015 and 0.2259 kg·C/m2 in 2020, and that the grassland was not
degraded, but rather improved. The driving mechanism analysis, on the other hand,
showed that from 2015 to 2020, the decrease in the average temperature during the growing
period (−0.2744), the distance from the settlement (553.1192 m), the altitude (1332 m), and
the increase in precipitation during the growing period (10.3333) were the elements that
increased the expectation of the degradation of the grassland; whereas in regard to the
decrease in the rural population (0–0.7857), the number of livestock (0.2296), increase in
PDSI (0.113), and increase in GDP of the primary sector (0.6) are elements that decreased
the expectation of grassland degradation. The combined effect of these elements results in
an expected value of −1.04 for the probability of a decrease in NPP, i.e., no degradation of
grassland; the predicted result is consistent with the reality.

4.5. Spatial Distribution of Dominant Factors of Grassland Degradation

Based on the SHAP values on each image element and each element in the study
area, we extracted the element with the largest SHAP value (positive maximum value
without considering the absolute value) on each image element, and thus we obtained the
distribution map of the dominant elements of the degradation of Inner Mongolia grassland
(Figure 6). The map only shows the elements with the largest driving effect on the image
elements that have been in degradation, or those that may be in degradation.

In the vast majority of places, changes in the number of grassland livestock (including
cattle, sheep, and horses) are the most important element driving grassland degradation.
The total area of this image type amounted to 28.34 km2, accounting for 41.1% of the
total grassland area in the study area; it was concentrated in the central region of Inner
Mongolia, including Xilingol League, Ulanqab city, Hohhot city, Baotou city, Bayannur city,
and Ordos city.



Land 2025, 14, 386 14 of 19

Land 2025, 14, x FOR PEER REVIEW 14 of 20 
 

4.5. Spatial Distribution of Dominant Factors of Grassland Degradation 

Based on the SHAP values on each image element and each element in the study area, 
we extracted the element with the largest SHAP value (positive maximum value without 
considering the absolute value) on each image element, and thus we obtained the distri-
bution map of the dominant elements of the degradation of Inner Mongolia grassland 
(Figure 6). The map only shows the elements with the largest driving effect on the image 
elements that have been in degradation, or those that may be in degradation. 

 

Figure 6. Dominant driving factor of grassland degradation in Inner Mongolia. 

In the vast majority of places, changes in the number of grassland livestock (includ-
ing cattle, sheep, and horses) are the most important element driving grassland degrada-
tion. The total area of this image type amounted to 28.34 km2, accounting for 41.1% of the 
total grassland area in the study area; it was concentrated in the central region of Inner 
Mongolia, including Xilingol League, Ulanqab city, Hohhot city, Baotou city, Bayannur 
city, and Ordos city. 

Rural population change is another important element driving grassland degrada-
tion in Inner Mongolia. The total area of this type of image element amounted to 21.66 
km2, accounting for 31.4% of the total area of grassland in the study area, and it was con-
centrated in the eastern region as well as the western region of Inner Mongolia, including 
Hulunbeier and Xing’an in the east, Ordos and Bayannur in the west, and other four allied 
cities. 

Climate change, on the other hand, is also an important element driving grassland 
degradation in Inner Mongolia. The total area of this type of image element reaches 13.31 
km2, accounting for 19.3% of the total area of grassland in the study area, and it is concen-
trated in Tongliao and Chifeng in southeastern Inner Mongolia, with a small amount of 
distribution in the northwestern area of Xilingol. 

Spatial relationship is the fourth major category of elements driving grassland deg-
radation in Inner Mongolia. Among all the spatial relationship elements, distance from 
settlements as well as distance from roads had the greatest impact. The total area of these 

Figure 6. Dominant driving factor of grassland degradation in Inner Mongolia.

Rural population change is another important element driving grassland degradation
in Inner Mongolia. The total area of this type of image element amounted to 21.66 km2,
accounting for 31.4% of the total area of grassland in the study area, and it was concentrated
in the eastern region as well as the western region of Inner Mongolia, including Hulunbeier
and Xing’an in the east, Ordos and Bayannur in the west, and other four allied cities.

Climate change, on the other hand, is also an important element driving grassland
degradation in Inner Mongolia. The total area of this type of image element reaches
13.31 km2, accounting for 19.3% of the total area of grassland in the study area, and it is
concentrated in Tongliao and Chifeng in southeastern Inner Mongolia, with a small amount
of distribution in the northwestern area of Xilingol.

Spatial relationship is the fourth major category of elements driving grassland degra-
dation in Inner Mongolia. Among all the spatial relationship elements, distance from
settlements as well as distance from roads had the greatest impact. The total area of these
two categories of like elements was 3.45 km2, accounting for 5% of the total grassland
area in the study area. Moreover, the pixels affected by the settlement factor were mostly
distributed in Hulunbeier city, and the pixels affected by the road factor were mostly
distributed in Tongliao and part of Chifeng.

As for the terrain factor (elevation, slope), regional economy (GDP) and industrial
development (primary industry) factors, it is very rare that they act as the dominant driving
factors of grassland degradation in Inner Mongolia. The total area of these categories of
like elements is only 1.17 km2, accounting for less than 1.7% of the total grassland area.

5. Discussion
5.1. Spatial Variations and Policy Recommendations

The study showed that grassland degradation in Inner Mongolia is more serious
in the north than in the south, and heavier in the east than in the west. These findings
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are consistent with the spatial distribution patterns of grassland degradation research
hotspots in China over the past 20 years found by Hu et al. [48] We found that, at the global
scale, changes in rural population size, changes in livestock numbers, changes in average
temperature during the growing season, changes in maximum temperature during the
growing period, and distance from roads were the main drivers affecting grassland change
in Inner Mongolia during 2015–2020. Our study portrays the grassland change drivers and
their contribution rates in Inner Mongolia in a more detailed and precise manner, which is
a significant improvement on the results of previous overly cursory analyses of grassland
change drivers by Ma et al. [49], Deyin et al. [50] and Li et al. [51]

This study shows that there is spatial differentiation in the dominant driving factors
of grassland evolution in different regions. Therefore, grassland degradation prevention
and management policies should be tailored to grasslands in different habitat contexts. For
example, in areas where changes in rural population are the dominant factor in grassland
degradation, management strategies should be formulated for the rural population, such
as upgrading the level of urbanization and reducing the rural population. In areas where
changes in the number of livestock are the dominant degradation factor, the number of
livestock should be reasonably controlled according to the carrying capacity of grassland
livestock. For areas where road distance dominates degradation, the construction of fences
around roads should be strengthened to reduce the impact of road activities on grasslands.

This study provided comprehensive insights into the pixel-level dominant factors
influencing grassland degradation. By identifying the key drivers specific to different
regions, the research offered a detailed understanding of how these factors vary spatially
across Inner Mongolia. The results significantly contribute to the theoretical framework
and data foundation needed for a more refined interpretation of the relationship between
grassland health and its influencing factors. This granular approach underscores the
complexity of grassland ecosystems, highlighting the necessity for targeted and region-
specific policies to effectively manage and mitigate grassland degradation. This data-driven
strategy promotes sustainable grassland management and contributes to the mitigation of
grassland degradation.

5.2. Limitations and Outlook

There are uncertainties in this study regarding the underlying data, data model con-
version, and spatial and temporal scales of analysis. According to the assessment of
Turner et al. [52], MODIS NPP data are overestimated in low productivity areas such as
grasslands. However, considering that the misestimation of grassland NPP by MODIS
products is systematic, whereas this paper focuses on multi-year trends in NPP, the under-
estimation of the absolute value of MODIS NPP does not significantly affect the conclusions
of this paper. Nonetheless, this systematic bias may introduce uncertainties when ana-
lyzing the driving mechanisms of NPP changes in specific regions, particularly in areas
with inherently low productivity. Future studies should consider incorporating corrections
or using complementary high-resolution datasets such as Landsat and Sentinel data to
mitigate this potential impact.

The economic and social development data (e.g., GDP, primary industry output value,
population, number of various types of livestock, etc.) used in this study are based on
county-level administrative units. However, in the specific analysis process, the authors did
the homogenization process based on the area of the administrative area, thus generating
spatialized data. Undoubtedly, the process of transforming from statistical data in the form
of two-dimensional tables to spatial data, due to the difference in spatialization models, will
cause greater uncertainty in the analysis results and give rise to incomparability between
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different results. Future research should explore more refined spatialization techniques or
incorporate multiple data sources to enhance accuracy.

Beyond data uncertainties, the models used in this study have inherent limitations
that should be acknowledged. SHAP, when calculating Shapley values, involves repeated
computations for each feature, which can result in high computational complexity, espe-
cially when dealing with high-dimensional data and large sample sizes. This increased
computational cost may lead to extended processing times, particularly in large datasets or
high-dimensional feature spaces. Future research could explore optimizing algorithms or
utilizing alternative methods, such as LIME, to enhance the efficiency of its application in
large-scale datasets.

When analyzing the driving factors, this study only considered the impact of climate
change and socioeconomic development throughout the year or the growing season over
the six-year period (2015–2020). However, the specific effects of these drivers in different
years and months were not analyzed, nor was the potential lag effect accounted for, where
changes in socioeconomic or climatic factors may not immediately translate into variations
in NPP. This lag can lead to underestimation or overestimation of certain causal relation-
ships. Additionally, differences in the analyzed time period and its granularity, as well as
the omission of lag effects, could affect the accuracy and credibility of the results. More-
over, cross-scale influences pose a challenge, as interactions between large-scale climatic
patterns and local ecological responses may not be fully captured by models trained at a
single spatial resolution. Future research could address these limitations by incorporating
temporal dependencies, such as lagged predictor variables, and by integrating multi-scale
modeling approaches to better capture hierarchical relationships in grassland ecosystems.

6. Conclusions
In this paper, the authors proposed a technical framework based on an interpretable

ML method for the selection of key driving elements of grassland change, the determination
of the contribution rate of driving factors, and the spatial mapping of dominant driving
factors, and carried out a case application in Inner Mongolia, China. The study proves the
effectiveness of using ML methods, SHAP methods, GIS and other methods to analyze and
map the driving mechanisms of grassland evolution, which provides a scientific basis for
the local government to manage grassland degradation and it also provides a reference for
the study of the driving mechanisms of natural and ecological changes in similar regions.

The study shows that grassland degradation in Inner Mongolia has an obvious spatial
distribution pattern, and the LightGBM model can achieve the best prediction results in
terms of prediction accuracy, reliability and stability. Changes in rural population size,
changes in livestock size, changes in average temperature during the growing season,
changes in maximum temperature during the growing period, and distance from roads
are the key elements driving changes in the Inner Mongolian grasslands. This study also
completed spatial mapping of the dominant elements of grassland degradation, providing
a scientific basis for designing geographically targeted grassland degradation manage-
ment initiatives.

Future research could focus on addressing the limitations of this study, such as incor-
porating temporal dependencies and lag effects, exploring the scale effects of data with
different resolutions, and investigating alternative interpretative models and methods.
These improvements would enhance the model’s ability to capture complex interactions
within grassland ecosystems, providing more accurate predictions and deeper insights for
sustainable management practices. Additionally, applying this framework to regions with
different ecological characteristics would further validate its applicability and effectiveness
in a broader context.
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