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Abstract: With the acceleration in population migration and urbanization, accurate population den-
sity prediction has become increasingly important for regional planning and resource management.
This study focuses on predicting population density at the township level in Inner Mongolia. By
integrating multi-source data, such as nighttime light indices and road network density, various
machine learning models—including random forest, XGBoost, and LightGBM—were employed
to significantly improve prediction accuracy. Interpretable machine learning techniques were uti-
lized to quantitatively analyze the contribution of various variables to population distribution. The
results indicate that nighttime light indices and road network density are key influencing factors,
revealing their complex nonlinear relationships with population density. This study provides new
methodological support for predicting population density in Inner Mongolia and similar regions,
demonstrating the potential of machine learning in regional population research. While machine
learning models effectively capture correlations between variables, they do not reveal causal relation-
ships. Future research should introduce more detailed data and causal inference models to deepen
our understanding of population distribution and its influencing factors.

Keywords: Inner Mongolia; population density; machine learning; SHAP

1. Introduction

In the context of increasing population migration and accelerating urbanization, accu-
rate population density forecasting has become a critical research topic in regional planning,
socio-economic development, and resource management [1]. High-precision population
density predictions can assist decision-makers in effective resource allocation, infrastructure
planning, and emergency management, thereby providing data support for sustainable
development.

As the complexity of spatial population distribution continues to increase, researchers
have developed various methods to address the challenges of population density modeling
across different scales [2-6]. These methods range from large-scale global predictions to
fine-scale modeling, covering a wide array of applications [7,8]. Traditionally, statistical
models based on census data are a commonly used approach for population density fore-
casting. These models primarily rely on macro-level statistical data and employ spatial
interpolation, regression analysis, or region-based weighting methods to distribute popula-
tions across various spatial units [9,10]. Such methods are widely applied in large-scale
predictions, such as at the national and provincial levels, due to their simplicity and low
computational cost. However, with evolving research demands, particularly in smaller-
scale applications such as towns or communities, the limitations of traditional statistical
models have become increasingly evident. These models often struggle to capture complex
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spatial heterogeneity and interactions among multiple variables, resulting in inadequate
predictive accuracy at finer scales. To address these limitations, researchers have begun
to adopt population density forecasting methods based on multi-source data, including
remote sensing data, land use data, and nighttime light data [11-13]. These high-resolution
data sources offer more detailed spatial information about population distribution within
regions. For example, remote sensing data, such as DMSP/OLS nighttime light data and
VIIRS data, can provide valuable insights into population density patterns [14-17], capture
the spatial variations of economic activities [18], and reflect population density in urban
areas. By integrating these multi-source data, models can more accurately reflect the actual
distribution of populations while better capturing significant factors such as urban-rural
differences and geographical influences [18]. In recent years, forecasting methods based on
remote sensing technology [19,20] have been widely applied in global and regional studies
of population distribution, demonstrating significant potential in exploring correlations
between population and economic activities.

With the increasing volume of spatial data, researchers have developed various mod-
eling methods to facilitate the integration and processing of multi-source data [18,21]. The
primary modeling approaches can be categorized into top-down, bottom-up, and hybrid
methods. Top-down methods rely on macro-level statistical data, which are allocated
to smaller spatial units according to specific rules. These methods, such as GPW [22]
and LandScan [23], are widely used for global-scale population density forecasting and
are particularly suited to large-scale regional estimations. However, these methods often
struggle to effectively handle spatial heterogeneity at smaller scales. Bottom-up meth-
ods, in contrast, begin with local areas and gradually infer population distribution using
detailed data, such as building distribution and land use. These methods demonstrate
exceptional performance in population density forecasting at smaller scales, such as cities
or communities. A notable example of this approach is the Global Human Settlement
Layer (GHSL) project in Europe, which leverages high-resolution regional data to generate
more accurate predictions. Hybrid methods combine the strengths of both top-down and
bottom-up approaches, utilizing the extensive coverage of macro-level statistical data and
the granularity of micro-level data to provide high-precision population forecasts across
different scales. By integrating data from multiple levels, hybrid methods ensure data
integrity at larger scales while maintaining predictive accuracy at smaller scales, making
them suitable for a wide range of applications.

To further enhance the accuracy of population density forecasting, researchers have
increasingly incorporated machine learning techniques in recent years [24,25]. Unlike tradi-
tional rule-based or linear assumption models, machine learning methods learn complex
relationships between variables in a data-driven manner, enabling more effective handling
of nonlinear features within multi-source data. Commonly used machine learning algo-
rithms, such as Random Forest [26], XGBoost [27], and LightGBM [28], excel at addressing
nonlinear relationships and intricate variable interactions, making them particularly suit-
able for fine-scale regional modeling. However, it is important to note that while machine
learning models can reveal strong correlations between variables and population density,
these relationships do not imply causation.

In this study, the application of machine learning techniques is primarily focused on
improving the efficiency of population density predictions rather than uncovering causal
mechanisms between variables. By integrating multi-source data, machine learning models
can enhance predictive accuracy, particularly when handling complex nonlinear relation-
ships. Additionally, with advancements in interpretable machine learning techniques,
researchers can quantify the influence of each variable on population density predictions.
This interpretability analysis helps researchers better understand the decision-making
processes of the models. While these variables may not have causal relationships with
population density, their correlations provide strong support for accurate predictions.

In summary, this study utilizes advanced machine learning algorithms, including
Random Forest (RF), XGBoost, and LightGBM, in combination with multi-faceted variable
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data such as nighttime lights and transportation networks, to construct a population density
prediction model at the township scale in Inner Mongolia. By employing interpretable
machine learning techniques, the contribution of each variable is quantified, revealing their
nonlinear correlations with population density, thereby enhancing the model’s transparency
and credibility. The study aims to address the following questions:

1.  What is the spatial distribution of the population at the township scale in Inner
Mongolia?

2. How do various machine learning models perform in population forecasting?

3. How can interpretable machine learning models elucidate the relationships between
different variables and population density, thereby enhancing model transparency?

2. Study Area, Data, and Methods
2.1. Overview of the Study Area

Inner Mongolia Province (Figure 1) is in northern China (between 97°11'-126°02" E
and 37°24/-53°23' N) and forms part of the inland area of the Eurasian continent. As of
2023, the region comprises 12 prefecture-level administrative units, including 9 cities and
3 leagues, and encompasses 103 counties. Covering a total land area of approximately
1.183 million square kilometers, it accounts for 12.3% of China’s total land area, making it
the third-largest province or region in China.
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Figure 1. Location and topography of the study area.

Inner Mongolia extends diagonally from northeast to southwest, forming a narrow
shape. It shares borders with Heilongjiang, Jilin, Liaoning, and Hebei to the east; Shanxi,
Shaanxi, and Ningxia to the south; Gansu to the west; and Russia and Mongolia to the
north. The region is characterized by relatively high elevation, with an average altitude of
approximately 1000 m. The terrain is predominantly plateau and flatlands. The average
annual temperature ranges from 2 °C to 14 °C, with annual precipitation averaging around
400 mm. The climate is primarily temperate continental, featuring cold winters and hot
summers, with precipitation decreasing from east to west. Inner Mongolia features diverse
vegetation types. From east to west, the primary land cover types include forest, arable
land, grassland, and desert, with grasslands and deserts serving as the dominant ecological
systems in the region.

In 2020, the permanent population of Inner Mongolia was 24.049 million, with Chifeng
City having the highest population at 4.036 million, while Alxa League had the lowest
population at 262,400. The gross domestic product (GDP) of Inner Mongolia in 2020
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was 1.73598 trillion yuan, consisting of a primary industry value added of 202.51 billion
yuan, a secondary industry value added of 686.80 billion yuan, and a tertiary industry
value added of 846.67 billion yuan, reflecting a ratio of 11.7:39.6:48.8 among the three
industries. The main industries include agricultural and livestock product processing,
energy and chemical industries, metallurgy and building materials, tourism, and high-
tech and service industries. Additionally, the region hosts the national key development
urban agglomeration of “Hohhot-Baotou-Ordos-Yulin”, encompassing Hohhot, Baotou,
and Ordos in Inner Mongolia, as well as Yulin in Shanxi Province.

2.2. Indicators

This study employs population density (total population of the area/total area) as
an indicator to characterize the population distribution in Inner Mongolia, treating it as
the dependent variable. The independent variables comprise 18 elements across seven
categories: economy, climate, vegetation cover, rivers, roads, topography, and land use.
This selection aims to analyze the impact of natural, climatic, and socio-economic factors
on population distribution.

Table 1 provides a brief description of the 18 variables highly correlated with popula-
tion distribution considered in this study. These variables include fundamental independent
elements (e.g., topography, precipitation) as well as associated elements that interact with
other variables (e.g., road network density and nighttime light index). The independent
elements are more intuitive in the model, making it easier to understand their contribution
to population density predictions, as they directly reflect the characteristics of the natural
environment or socio-economic conditions.

Table 1. Factors affecting population distribution.

Factor

Impact Factor Descriptive

Economic factors (A)

Nighttime light index (A1)

The nighttime lighting index is widely used to characterize the
development of cities and towns as an indicator that can assess the
level of economic development, population density, and other
urban development [29].

Climate (B)

Annual precipitation (B1) Humans cannot survive without adequate temperatures and

precipitation, and studies in larger regions have demonstrated the
positive effects of precipitation and temperature on population
Annual temperature (B2) distribution. The positive effect of precipitation and temperature on
population distribution has been demonstrated in studies
conducted in larger regions.

Vegetation cover (C)

In Inner Mongolia, where the ecosystem is sensitive and the
vegetation is susceptible to human activities, NDVI, as an
important indicator characterizing the growth of vegetation on the
NDVI (C) surface, has been widely used in the monitoring of vegetation
dynamics. NDVI, as an important indicator characterizing the
growth status of surface vegetation, is widely used in monitoring
vegetation dynamics.

River network density (D1)

Areas with many rivers not only have fertile soil and flat terrain,
but also provide sufficient water for agricultural production, and

Rivers (D) . . rivers can effectively influence the density of population
Distance from river (D2) distribution. Rivers can effectively influence the density of
population distribution.
The road network, which is the backbone of the city, has a high
Roads (E) Road network density (E1) correlation between road density and population and employment
Distance from road (E2) density. The road density is highly correlated with population and

employment densities.
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Table 1. Cont.

Factor Impact Factor Descriptive
As the most important factor among many geographic
environmental factors, topography has a close relationship with the
spatial distribution of population, and in the correlation analysis of
topographic factors and population distribution, it is found that
Topography (F) Slope (F) slope is negatively correlated with the population size and
population density. In the analysis of the correlation between
topographic factors and population distribution, it is found that
slope is negatively correlated with population size and density [30].
Cropland index (G1)
Forest 1n<.j1ex (G2) Land, as a valuable asset for human production and life, affects
Grassland index (G3) . .
Shrub index (G4) human daily life, and land use data are not only the basis for
Land use (G) b dex ecological conservation research, land resource management, and
Wetland index (G5) & &

Man-made land surface index (G7)

regional sustainable development, but also a direct manifestation of

Water column index (G6) human activities affecting nature.

Bare ground index (G8)

However, associated elements may exhibit multicollinearity issues, resulting in strong
interrelations when used together, which necessitates a deeper analysis to clarify their
contributions to population forecasting. To address the multicollinearity among the vari-
ables, all the relevant factors were initially included in the analysis, followed by a Variance
Inflation Factor (VIF) analysis to eliminate variables with strong multicollinearity. This
approach helps to select key variables that are highly correlated with population forecasting
and significantly improves the predictive accuracy of the model.

2.3. Basic Datasets and Data Preprocessing

Based on the original data format, the dataset is categorized into spatial and tabular
data. The spatial data uniformly adopts the Albers equal-area conic projection coordinate
system, with vector data granularity set at the township level and a spatial resolution of
1 km for raster data. Leveraging ArcGIS’s connection function for public fields, such as
place names or standardized codes, facilitates the association between attribute tables and
spatial vector data. Further conversion from vector to raster allows for the transformation
of various attribute data into spatial raster data.

Administrative division data at the township level were obtained from the Inner
Mongolia Autonomous Region Science and Technology Information Institute (https://
www.11467.com/huhehaote/co/4036.htm, accessed on 9 August 2019). Road data were de-
rived from the 2020 National Urban Road Dataset (https://download.csdn.net/download/
weixin_42153420/85474133, accessed on 9 August 2020), incorporating first- through fourth-
level roads. River and water system data were extracted from China’s rivers and lakes
dataset (data.tpdc.ac.cn, accessed on 9 August 2021), which amalgamates first-, third-,
fourth-, and fifth-level rivers. These datasets were then combined for further analysis.

The population data used in this study were sourced from the China 2020 Census
Information by Townships, Towns, and Streets (Inner Mongolia Autonomous Region),
published by the National Bureau of Statistics (https:/ /www.stats.gov.cn/sj/, accessed
on 11 May 2021). It is important to note that due to political district adjustments and data
updates, the number of township units recorded in the population census table (1027)
does not align with the number of township units in the administrative division spatial
data mentioned earlier (1020). To address this discrepancy, the authors cross-referenced
various datasets, including announcements related to administrative division adjustments.
Generally, the list of townships in the census forms served as the primary reference point.
Attribute verification and regional adjustments were carried out on the administrative
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division spatial data to ensure alignment with the demographic forms. This meticulous
process resulted in the creation of a spatialized dataset comprising 993 township units.

To assess the river and road factors, the distances from roads and rivers were initially
determined using the Near Neighbor Analysis tool in ArcGIS 10.4 software. Subsequently,
the river and road network densities were calculated by creating fishnet grids and applying
the following formula:

R(D) =% 1
where R(D) denotes the river network density or road network density in km/km?, re-
spectively. R or D represent the river or road length in kilometers, and A is the area of the
fishnet grid within the statistical area in km?.

Economic data, including GDP, total industrial output value, and agricultural, forestry,
animal husbandry, and fishery output values, were sourced from the Inner Mongolia
Statistical Yearbook (2021). These statistical survey data are aggregated at the flag (county,
district, and county-level city) level. To align with the previously mentioned population
data, the authors employed the principle of “proximity” to allocate economic data from the
flag-county level to each township. This approach facilitated the acquisition of GDP, gross
industrial output value, and agricultural, forestry, animal husbandry, and fishery output
value data at the township level, thereby establishing correlations with the respective
township units.

Meteorological data were obtained from the National Tibetan Plateau Scientific Data
Center (https://doi.org/10.11888/Hydro.tpdc.270302, accessed on 16 November 2019),
with precipitation data sourced from the China 1 km resolution month-by-month dataset
spanning 1901 to 2022. Specifically, precipitation data were extracted from China’s monthly
precipitation dataset at a 1 km resolution over the same period [31]. Additionally, tempera-
ture data were derived from China’s month-by-month mean temperature dataset at a 1 km
resolution, covering the period from 1901 to 2022 [32]. For this study, the 12-month pre-
cipitation and air temperature data for 2020 were averaged to calculate the annual values.
Subsequently, the spatial aggregation of average precipitation totals and air temperatures
within each township was conducted based on the established administrative division
boundaries.

The Normalized Difference Vegetation Index (NDVI) data for 2020 were obtained
from the MOD13A3 dataset available on the NASA website (https://ladsweb.modaps.
eosdis.nasa.gov/, accessed on 9 August 2020), with a spatial resolution of 1 km [33]. This
dataset, acquired by NASA’s MODIS (Moderate Resolution Imaging Spectroradiometer)
on Landsat, underwent multiple processing and calibration stages to ensure data quality
and accuracy. For this study, image processing, projection, and format conversion were
performed using MET software (1.3.0). Subsequently, mean NDVI values within each
township were calculated using administrative division boundaries as reference points.

The Digital Elevation Model (DEM) data were sourced from the SRTM dataset available
on the Geospatial Data Cloud website (https://www.gscloud.cn, accessed on 9 August
2003), with a spatial resolution of 90 m. Using ArcGIS, the Slope and Aspect tools were
employed to derive slope and slope direction data. The Focal Statistics tool was then
applied to calculate the maximum and minimum values of the DEM within a 4-square-
kilometer spatial domain. These maximum and minimum DEM values were used to
compute terrain relief parameters, defined as the difference between the maximum and
minimum DEM values. Additionally, the mean topographic relief within each township
was calculated based on the administrative division data.

Nighttime stabilized light intensity data for 2020 were acquired from the NOAA
website’s NPP/VIIRS Annual VNL V2 dataset (https:/ /eogdata.mines.edu/products/vnl/,
accessed on 9 August 2012) at a resolution of 1 km. The averages of nighttime light intensity
within individual townships were then calculated using the established administrative
division boundaries as reference points.
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Land cover data were sourced from the Globeland30 (2020) global land cover product,
available at a spatial resolution of 30 m via http://www.globallandcover.com, accessed on
9 August 2020). This product classifies land use into 10 categories: cropland, woodland,
grassland, shrubland, wetland, water bodies, tundra, man-made surfaces, bare ground,
glaciers, and permanent snow. Third-party evaluations indicate an overall accuracy of
83.5%, providing essential data for global land cover analysis. Using ArcGIS, the researchers
calculated the area and proportion of each land type withina 1 x 1 km fishnet grid, thereby
establishing indices for each land type (e.g., the cultivated land index). These calculations
were linked to the corresponding fishnet grid. Subsequently, the fishnet grid data (vector)
was converted to raster data, yielding spatial data (raster) such as a cropland index, forest
land index, grassland index, shrubland index, wetland index, water body index, man-made
surface index, and bare land index at a 1 km resolution. Building upon this foundation,
the mean value of each land index within each township was determined based on the
administrative division data.

2.4. Methodology
2.4.1. Multiple Linear Regression and Various Machine Learning Models

In this study, multiple linear regression and various machine learning models were
employed to develop population density prediction models at the township scale. Multiple
linear regression is a classical statistical method used to explore linear relationships between
multiple independent variables and population density. It quantifies the linear impact of
independent variables on population density through a linear equation. However, given the
complexity and nonlinearity of population distribution, relying solely on linear regression
may not adequately capture the intricate relationships among variables.

To enhance prediction accuracy, several machine learning models were also applied,
including Random Forest (RF), XGBoost, and LightGBM. These machine learning algo-
rithms learn complex nonlinear relationships between variables and population density
in a data-driven manner. Random Forest improves prediction accuracy by constructing
multiple decision trees and averaging their results, offering strong robustness and noise
resistance. XGBoost and LightGBM are optimized algorithms based on Gradient Boosting
Decision Trees (GBDTs) that iteratively optimize model parameters, enhancing the model’s
predictive power. Compared to linear regression, these machine learning models are better
suited to handle complex nonlinear relationships, especially in the context of multi-source
data.

2.4.2. Cross-Validation

Cross-validation is a widely used model evaluation method designed to prevent
overfitting and enhance the generalization ability of a model by dividing the dataset into
multiple subsets for repeated training and validation. In this study, K-fold cross-validation
was employed to assess the performance of various prediction models. In K-fold cross-
validation, the dataset is randomly divided into K subsets of approximately equal size. For
each iteration, one subset is used as the validation set, while the remaining K-1 subsets are
used as the training set. This process is repeated K times, with a different subset serving
as the validation set in each iteration. The results from all the K validation rounds are
then averaged to provide an overall evaluation of the model. This approach effectively
maximizes data usage, minimizes biases introduced by data partitioning, and offers a more
stable assessment of model performance.

In this study, K was set to 10, meaning the dataset was divided into 10 subsets, resulting
in 10 rounds of training and validation. During each round, 90% of the data was used for
training, and 10% was used for validating the model’s predictions. This method provides a
more reliable estimation of the model’s performance on unseen data and ensures robust
generalization capability.
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2.4.3. Accuracy Metrics for Population Modeling

To evaluate the performance of the population density prediction models, this study
employed several accuracy metrics. The commonly used evaluation criteria include Mean
Squared Error (MSE), Mean Absolute Error (MAE), and the Coefficient of Determination
(R?). Mean Squared Error (MSE) measures the average of the squared differences between
predicted and actual values, reflecting the overall level of prediction error. Mean Absolute
Error (MAE) represents the average of the absolute differences between predicted and
actual values, providing an intuitive measure of prediction accuracy. The Coefficient of
Determination (R?) assesses the model’s ability to explain the variability of the dependent
variable, with an R? value closer to 1 indicating a better fit. By using these accuracy metrics
in combination, a more comprehensive evaluation of the predictive performance of different
models can be conducted, allowing for the selection of the optimal prediction model.

3. Results Analysis
3.1. Spatial Distribution Pattern of Population

From the spatial distribution map of the population density in Inner Mongolia
(Figure 2), it can be observed that the pattern of population density roughly forms an
inverted “S” shape. Specifically, the boundary is defined by a line connecting “Ulubutie
(C1)—Tule Maodu (C2)—Honggeergaole (C3)—Bayinbaolige (C4)—]Jia’ergale Saihan (C5)”,
indicating a spatial distribution trend from the southeast to the northwest. Population
density in the eastern and southern parts of this boundary is significantly higher compared
to the western and northern regions. This boundary aligns closely with the 300 mm isohyet
and the Daxing’anling (M1)-Yinshan mountains (M2)-Langshan Mountains (M3). Areas
with higher population density are primarily concentrated in the Hetao region, through
which the Yellow River flows in central Inner Mongolia (extending from south of the
Dagingshan Mountains (M2) to the north bank of the Yellow River), and the Xiliao River
basin in southeastern Inner Mongolia (including Tongliao and Chifeng, located south of
the Daxing’anling (M1)). Conversely, regions with lower population density are mainly
situated in grasslands and deserts below the 300 mm isohyet.
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Figure 2. Population density distribution at the township level in Inner Mongolia in 2020. C1:
Ulubutie; C2: Tule Maodu; C3: Honggeergaole; C4: Bayinbaolige; C5: Jia’ergale Saihan. M1:
Daxing’anling Mountains; M2: Daqgingshan Mountains, M3: Yinshan Mountains; M4: Lanshan
Mountains, M5: Yabulai Mountains, and M6: Longshou Mountains.
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The average population density of the autonomous region is 21 people/km?. The max-
imum population density is found in Chifeng City (Zhenxing region) in the southeastern
part of the region, with a density of 36,631.48 people/km?, while the minimum is in Eerguna
City (Enhehada region) in the northeastern part, with a density of 0.002335 people/km?.
There is a severe mismatch between population distribution and land area (Figure 3). Areas
with a population density of less than 100 people/km? account for 97.6% of the total land
area but only constitute 36.4% of the autonomous region’s total population. Conversely,
areas with a population density greater than 200 people/km? contain 54.3% of the total
population, yet they occupy only 1.03% of the total land area.
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Figure 3. Line chart of total population and area of townships in Inner Mongolia with different
population density classifications.

3.2. Evaluation of Multiple Models in Population Density Prediction

This study employed four models to predict population density, including linear
regression, XGBoost, Random Forest, and LightGBM. The performance of the models was
evaluated using three key metrics: R?, MBE (Mean Bias Error), and MAE (Mean Absolute
Error). The results indicated that the ensemble models exhibited stronger predictive
capabilities compared to linear regression.

The R2 value of the linear regression model is 0.8236, indicating that the model explains
approximately 82% of the variance in the data (Figure 4). However, the Mean Absolute Error
(MAE) of the linear regression model is 1043.55, reflecting a significant prediction error.
The Mean Bias Error (MBE) is —157.95, indicating a general tendency for underestimation
and a noticeable prediction bias. This result highlights the limitations of linear regression
in capturing the nonlinear and complex relationships inherent in population density data,
leading to suboptimal performance of the test set.
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Figure 4. Comparison of population density prediction results of different regression models on
the training and testing sets. (a—d) show the scatter plots of population predictions for training
and testing models under different models, with the red line representing the one-to-one fit line.
(e) presents the specific accuracy values of R?, RMSE, and MAE for the different models.

In contrast, the XGBoost model significantly improved predictive accuracy, achieving
an R? of 0.9758, explaining over 97% of the variance. This suggests that the model fits
the training data well and maintains strong generalization capability in the test set. The
MAE for XGBoost is 358.91, substantially lower than that of linear regression, confirming
enhanced predictive precision. The MBE for XGBoost is 18.72, close to zero, indicating
minimal systematic bias in the predictions.

The Random Forest model performed similarly to XGBoost, with an R2 of 0.9787, the
highest among the four models, indicating the strongest predictive capability for population
density. Its MAE is 287.23, the lowest of all the models, demonstrating that Random Forest
excels in minimizing average prediction error. The MBE is 10.08, further substantiating the
model’s accuracy with minimal bias.

LightGBM achieved an R? of 0.9478, slightly lower than XGBoost and Random Forest
but still explaining approximately 95% of the data variance. Its MAE is 526.22, somewhat
higher than XGBoost and Random Forest, yet significantly better than linear regression.
The MBE is —34.01, indicating a slight overall underestimation, though with relatively low
bias.

3.3. Feature Importance Analysis Based on Interpretable Models

The best-performing Random Forest model was further employed to predict pop-
ulation density, and SHAP values were utilized to analyze the contribution of different
features to the model’s outputs. The figure displays the ranking of feature importance
for each variable and their specific impacts on population density predictions. SHAP
values quantitatively reveal the relationships between each variable and population density.
The nighttime light index emerges as the most significant variable in population density
predictions, with SHAP value analysis indicating that its importance far exceeds that of
other features. Regions with higher nighttime light indices are typically closely associated
with higher population densities. The broad distribution range of SHAP values for the
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(a) Feature Importance based on SHAP Values (b)

nighttime light index signifies its substantial impact on predicting population density. This
index reflects levels of urbanization and economic development, which are highly corre-
lated with population concentration. Therefore, its contribution to the model is prominent,
establishing it as a key indicator for explaining population distribution.

Road network density ranks second in feature importance, exhibiting a strong cor-
relation with population density. Areas with higher road network density often coincide
with higher population densities, indicating a robust relationship between the two. This
relationship may be influenced by the level of infrastructure development and regional
attractiveness. However, due to potential interactive relationships between road network
density and population density, further exploration with additional data is necessary to
clarify these association mechanisms.

The cultivated land index is the third most significant variable contributing to popu-
lation density predictions, with the SHAP values revealing a complex relationship with
population density. The distribution of the SHAP values indicates that the influence of the
cultivated land index varies across regions with differing population densities. In some
low-density areas, a high cultivated land index may exhibit a negative correlation, whereas
in areas with higher agricultural intensification, a positive correlation with population
density may be observed.

In contrast, variables such as the water body index and river network density exhibit
lower feature importance, with the SHAP values indicating a weak correlation with popula-
tion density. Their relatively small SHAP value ranges suggest limited overall contributions
to the model’s predictions.

Through the quantitative analysis of the SHAP values, the results clearly demonstrate
that the nighttime light index, road network density, and cultivated land index are the most
important features for predicting population density. The correlations of these features with
population density significantly enhance the model’s predictive capability. Specifically, the
nighttime light index has the largest SHAP value range, indicating its status as the most
critical explanatory variable, while road network density and cultivated land index also
play significant roles, though their effects are relatively more stable and region-specific.

The six most important variables were selected to illustrate their nonlinear relation-
ships with population density predictions. Figure 5 depicts the fluctuations of the SHAP
values for these variables as they change, highlighting the contributions of each variable to
the model’s predictions and their impact on population density forecasting.
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The nighttime light index shows a clear positive correlation with population density
(Figure 6). As the nighttime light index increases, the SHAP values exhibit a continuous
upward trend, indicating a strong linear relationship between this variable and population
density predictions. Throughout the entire range of the index, the SHAP values for the
nighttime light index consistently increase without any apparent breakpoints, suggesting a
persistent positive influence on population density within the model, making it one of the

most important predictors.
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Figure 6. Nonlinear relationship between key variables and population density prediction.

In contrast, road network density demonstrates a different trend. In the lower range
of road network density, the SHAP values show a linear increase, indicating a strong
correlation with population density. However, once road network density reaches a certain
threshold (approximately around 10), the SHAP values stabilize and no longer exhibit
significant increases. This suggests that in areas with low road network density, the
variable contributes significantly to predicting population density, but its marginal effect
diminishes once a certain level is reached. This phenomenon indicates that in regions with
well-developed infrastructure and high road network density, further increases do not
substantially alter population distribution.

The cultivated land index exhibits a complex nonlinear relationship. Within the lower
range of the index, the SHAP values are relatively high, indicating a strong contribution
to population density predictions. However, as the cultivated land index increases, the
SHAP values decline sharply and tend to stabilize, suggesting that beyond a certain extent,
additional cultivated land has a limited impact on population density. This trend may be
due to the fact that regions with extensive cultivated land are often sparsely populated
agricultural areas, where further expansion of cultivated land does not enhance population
density.

The trends for the forest index and grassland index are like that of the cultivated land
index. At lower values, the SHAP values are relatively high, indicating that these variables
contribute to population density predictions in certain areas. However, as the areas of forest
and grassland increase, the SHAP values decline and stabilize, reflecting a diminished
influence on population density. This suggests that forests and grasslands are primarily
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distributed in remote or protected zones, leading to a lower correlation with population
distribution.

The SHAP values for slope also exhibit nonlinear characteristics. In flatter terrain
(lower slope range), the SHAP values are higher, indicating an association with higher
population density. As the slope increases, the SHAP values decline sharply, suggesting a
negative impact on population density as terrain becomes steeper. Once the slope exceeds
a certain value (approximately around 5), the SHAP values stabilize, indicating that the
marginal effect of terrain on population density diminishes in areas with extreme slopes.

In summary, the nighttime light index and road network density are the most influ-
ential variables for predicting population density. The nighttime light index maintains a
strong positive correlation across its entire range, while the impact of road network density
stabilizes after a certain threshold is reached. The cultivated land indeXx, forest index, grass-
land index, and slope exhibit clear nonlinear relationships, with significant contributions to
population density predictions in their lower ranges and diminishing marginal effects at
higher values. These nonlinear relationships highlight the complex connections between
these variables and population density, underscoring the critical roles of different factors
and their tipping point effects within the predictive model.

4. Discussion
4.1. Performance of Machine Learning Models

The three machine learning algorithms employed in this study—Random Forest,
XGBoost, and LightGBM—demonstrated significant advantages in predicting population
density at the township scale in Inner Mongpolia, particularly given the region’s vast size
and sparse population distribution. Inner Mongolia is characterized by a large geographical
span and notable regional differences, with population density exhibiting strong spatial
heterogeneity. Traditional multiple linear regression methods, while providing some
predictive capability, are constrained by their assumption of linear relationships between
variables. This limitation makes them less effective at capturing complex nonlinearities
and interactions, especially in large-scale, low-density areas.

In contrast, machine learning models, particularly Random Forest, XGBoost, and
LightGBM, excel at handling complex data within a diverse environment like Inner Mon-
golia. The Random Forest model demonstrated strong performance in managing high-
dimensional data and capturing complex nonlinear relationships between variables, espe-
cially in remote areas with sparse and noisy data. Its robust noise tolerance and stability
help reduce overfitting and enhance accuracy in large-scale datasets.

XGBoost and LightGBM further improved model performance by gradient boosting
algorithms, making them particularly well-suited to the diverse spatial characteristics of In-
ner Mongolia. The region exhibits significant differences, with economically developed and
densely populated eastern and southern parts, contrasting with sparsely populated western
and northern areas due to factors such as resource scarcity and limited infrastructure. By
employing multiple iterations to adjust weights, XGBoost and LightGBM effectively fit
complex spatial heterogeneity, capturing variations in population density across different
regions. For instance, in the economically active and infrastructure-rich eastern areas, these
models can better illustrate the relationship between economic activity and population
density. Conversely, in the remote western and northern regions, the models accurately
predict population distribution despite limited sample data.

Overall, all three machine learning models significantly enhanced the prediction accu-
racy of population density at the township scale in Inner Mongolia, particularly in regions
with substantial spatial heterogeneity and a low population density. By comparison, tradi-
tional statistical models struggle to adapt to complex spatial distributions and nonlinear
relationships, making them less effective in such environments.
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4.2. Relationships Between Key Factors and Population Distribution

This study employed machine learning models to predict population density at the
township level in Inner Mongolia, uncovering the relationships between multiple variables
and population distribution. These variables do not operate independently; rather, they
interact in complex ways that collectively shape the spatial distribution patterns of the
population.

Firstly, the strong correlation between the nighttime light index and population density
suggests that this measure effectively reflects levels of urbanization and the distribution of
economic activities within a region [34-36]. While nighttime lights indicate economically
active areas, the relationship between economic activities and population density is not uni-
directional. Regions with dense economic activities often exhibit high population densities,
while high population density can also drive local economic development [37-39]. Future
research could incorporate more detailed data on regional industrial distribution [40,41]
and public service facilities [42,43] to further elucidate the complex relationship between
nighttime lights and population distribution.

The impact of road network density tends to stabilize after reaching a certain level,
indicating that once infrastructure is sufficiently developed, changes in population dis-
tribution are influenced by other factors, such as accessibility to public services and the
allocation of infrastructural resources. This suggests that in regions with high road network
density, the interaction between infrastructure and population distribution is complex. Fu-
ture research could explore the mutual influences of socio-economic factors and population
density to further optimize infrastructure planning [40]. Regarding land use types, farm-
land, forests, and other land categories exhibit nonlinear effects on population density. The
interaction between different land types and population distribution varies under different
contexts [44]. This variation may be attributed to differences in production efficiency, land
policies, and economic development models across regions engaged in agriculture, forestry,
and other activities [45].

4.3. Limitations

Although this study successfully revealed the relationships between multiple factors
and population density at the township scale in Inner Mongolia, certain limitations and
uncertainties remain. First, despite the use of multi-source data, the data quality and spatial
coverage in remote areas of Inner Mongolia may be inadequate, potentially impacting the
accuracy of predictions in regions with low population density. Future research could
improve data collection by incorporating new data sources, such as high-resolution remote
sensing data and social media data, to further enhance model adaptability and precision.

Second, this study primarily identified correlations between variables without delving
into the causal relationships among these factors. Future research could consider incorpo-
rating causal inference models to explore the underlying mechanisms linking population
distribution with factors such as the economy and infrastructure. This approach would
provide stronger theoretical support for regional planning and policy-making.

Additionally, due to the significant regional differences across Inner Mongolia, a single
model may struggle to adapt effectively to the characteristics of all areas. Future studies
could adopt a regional modeling approach, adjusting models based on the geographic
and socio-economic characteristics of different areas, thereby further improving prediction
accuracy and generalizability.

5. Conclusions

This study developed a population density prediction model at the township scale
in Inner Mongolia using advanced machine learning models, including Random Forest,
XGBoost, and LightGBM, combined with multi-source data such as nighttime lights and
transportation networks. The experimental results demonstrate that these machine learning
models have significant advantages in handling complex nonlinear relationships and
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multivariable interactions, thereby effectively improving the accuracy of population density
predictions.

By incorporating explainable machine learning techniques, we not only enhanced the
transparency of the model but also uncovered the nonlinear relationships between various
variables and population density, providing new perspectives and methodologies for future
research on population distribution. Despite certain limitations, such as the influence of
data quality and spatial scale, this study offers strong technical support for population
density prediction in small-scale regions and demonstrates high practical value.

Future research could integrate additional auxiliary data, such as social media and
climate change indicators, and improve data preprocessing and model optimization tech-
niques to further enhance prediction accuracy and model robustness. Additionally, the
methods developed in this study have strong potential for broader regional applications,
particularly for similar population density predictions in areas with analogous geographical
conditions.
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