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ARTICLE INFO ABSTRACT

Keywords: Understanding vegetation dynamics and their influencing factors is essential to regional sustainable development

Vegetation changes and ecological security. However, large-scale and long-term vegetation changes and attribution pose challenges

ZDV{) X due to temporal and quality discrepancies in multi-source remote sensing data. This study developed a research
ttribution

framework based on multi-source data integration and conducted a case study in Mainland Southeast Asia. By
integrating Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectror-
adiometer (MODIS) satellite data, we generated a long-term Normalized Difference Vegetation Index (NDVI)
dataset for 1982-2023. We used trend test, partial correlation analysis, and linear regression analysis to explore
spatiotemporal vegetation dynamics and their links to climate and human activities. The results show: (1) the
multi-year average NDVI of Mainland Southeast Asia is 0.797, with 85 % of the area exceeding 0.7, indicating
robust vegetation growth across the region. The regional NDVI shows a significant increasing trend in
1982-2023, with a growth rate of 0.02 per decade. (2) The impact of rising temperatures on vegetation in
Mainland Southeast Asia is mainly positive, increasing NDVI in 81 % of the area. Whereas the impact of reduced
precipitation on vegetation is negligible. (3) In the quantitative attribution, temperature changes have the largest
contribution to NDVI changes, contributing 70 % (0.049) to regional NDVI changes (0.056) and dominating 40 %
of the area. Human activities contribute 20 % (0.014) and dominate 33 % of the area. Precipitation changes
contribute 10 % (-0.007) and dominate about 5 % of the area. This study offers scientific insights and data
support for understanding vegetation changes and sustainable development in Mainland Southeast Asia.

Climate changes
Human activities
Mainland Southeast Asia

1. Introduction

The increase in carbon dioxide in the atmosphere has led to wide-
spread and profound impacts on global ecosystems. The IPCC’s Sixth
Assessment Report emphasized that to meet the 1.5°C temperature
target, countries need to take immediate action to achieve carbon
neutrality (Livingston and Rummukainen, 2023). Vegetation, as a
crucial carbon sink, plays a significant role in climate regulation,
reducing atmospheric carbon concentrations, and maintaining biodi-
versity (Anees et al., 2024; Salim et al., 2024; Signorile et al., 2024).
Therefore, it is essential to research vegetation dynamics to assess
ecosystem health and provide a basis for formulating strategies to
address climate change (Wang et al., 2023).

In recent years, the rapid development of remote sensing technology
has provided strong support for monitoring vegetation dynamics.
Remote sensing data feature extensive coverage, long time series, high
resolution, and near-real-time acquisition, significantly enhancing the
accuracy and reliability of vegetation dynamic analysis (Mngadi et al.,
2024). Among various remote sensing indices, the Normalized Differ-
ence Vegetation Index (NDVI) has become a common indicator for
assessing vegetation growth conditions due to its high correlation with
Net Primary Productivity, photosynthetic efficiency, and Leaf Area
Index, as well as its accessibility and wide applicability (Chouari, 2024;
Hu et al., 2022; Reyes-Avila and Baxter, 2024). Vegetation dynamic
monitoring based on remote sensing NDVI is a crucial area of research in
climate and environmental change and provides a powerful tool for

* Corresponding author at: State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources

Research, Chinese Academy of Sciences, Beijing 100101, China
E-mail address: huyf@lreis.ac.cn (Y. Hu).

https://doi.org/10.1016/j.landusepol.2025.107546

Received 18 November 2024; Received in revised form 22 February 2025; Accepted 21 March 2025

Available online 27 March 2025

0264-8377/© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, Al training, and similar technologies.


https://orcid.org/0000-0002-6219-6251
https://orcid.org/0000-0002-6219-6251
mailto:huyf@lreis.ac.cn
www.sciencedirect.com/science/journal/02648377
https://www.elsevier.com/locate/landusepol
https://doi.org/10.1016/j.landusepol.2025.107546
https://doi.org/10.1016/j.landusepol.2025.107546
http://crossmark.crossref.org/dialog/?doi=10.1016/j.landusepol.2025.107546&domain=pdf

Y. Hu et al.

assessing the ecological security of global key carbon sink areas (Gandhi
et al., 2015).

Existing studies consistently indicate that global vegetation indices
have changed significantly due to the combined impacts of climate and
human activities (Banerjee et al., 2024; Campana et al., 2024; Tuoku
etal., 2024). Temperature and precipitation are regarded as key climatic
factors affecting land ecosystems (Hashim et al., 2024; Yuan and Zhou,
2004). Suitable temperature and precipitation can help vegetation grow
and maintain ecological balance, while extreme weather events, such as
high temperature and excessive precipitation, can affect vegetation
negatively. Mohammat et al. (2013) demonstrated that drought and
spring cooling led to a reduction in vegetation growth in inland Asia.
Zhang et al. (2016) noted that temperature and precipitation are major
drivers of vegetation changes and significantly affect vegetation growth,
distribution, and carbon balance functions. Furthermore, due to differ-
ences in vegetation types, terrain, and other factors across regions, the
impacts of temperature and precipitation on vegetation show significant
spatial heterogeneity (Pereira et al., 2024; Zahura et al., 2024). For
example, Li et al. (2020) found that increased monthly temperature
promotes the growth of evergreen broadleaf forests, mixed forests, and
crops, while vegetation growth in tree-grasslands and typical grasslands
is more significantly influenced by monthly precipitation.

Besides, human activities have significant direct or indirect impacts
on the surrounding wildlife and environment (Chigbu, 2023; Ntihi-
nyurwa et al., 2019; Pathak et al., 2021; Raycraft, 2023). For example,
protecting existing vegetation and afforestation can increase vegetation
coverage, while excessive cultivation and overgrazing can lead to
vegetation degradation and coverage reduction. The IPCC reports have
consistently highlighted that the impact of human activities on climate
and environmental systems is significant and increasing (Hashim et al.,
2024; Pathak et al., 2021). Geng et al. (2022) demonstrated that human
activities had a significant impact on vegetation changes in China from
2000 to 2015, with different vegetation types responding differently.
Zhu et al. (2016) found that land use changes contributed the most to
regional greening in southeast China and the eastern United States.
Lapola et al. (2023) noted that human disturbances have led to Amazon
forest degradation and threatened regional ecological security, espe-
cially due to edge effects, logging, fires, and human-induced extreme
drought. With the spread of environmental protection and dual carbon
theories, scientific vegetation protection and restoration measures have
been widely applied. This has not only improved the ecological envi-
ronment and protected biodiversity but also promoted regional sus-
tainable development. For example, Ma et al. (2023) showed that the
Grain-to-Green Project has reversed the trend of decreasing vegetation
area and coverage in Southwest China to an increase.

Despite existing research revealing the multifaceted impacts of
climate and human activities on vegetation, most studies have been
based on vegetation dynamics analysis from after 2000 due to limita-
tions in remote sensing data sources, making it difficult to capture long-
term changes and driving mechanisms comprehensively (Anees et al.,
2024; Hutchinson et al., 2015). Therefore, it is necessary to extend the
coverage and research period of consistent remote sensing data through
multi-source data integration to explore the impacts of long-term
climate change and human activities on vegetation (Alharbi, 2024).
This will be significant for advancing historical vegetation dynamics
research, predicting future vegetation changes, and promoting regional
sustainable development.

Mainland Southeast Asia is a key region connecting the East Asian
continent, the South Asian subcontinent and the Malay Archipelago,
with significant geopolitical and economic importance (Wang et al.,
2022b). However, existing research still lacks analysis of long-term
vegetation changes in Mainland Southeast Asia (Ha et al., 2023). To
address the shortcomings in long-term vegetation change research and
the need for vegetation monitoring for sustainable development in
Mainland Southeast Asia, this study used multi-source remote sensing
data to construct a long-term, consistent NDVI dataset and conducted an
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in-depth investigation of vegetation dynamics in Mainland Southeast
Asia. This study intends to achieve three objectives:

(1) Develop a framework for vegetation change detection and attri-
bution analysis based on multi-source remote sensing data integration.

(2) Create an NDVI dataset covering Mainland Southeast Asia since
1982 to provide data support for long-term vegetation dynamics
research in the region.

(3) Explore vegetation changes in Mainland Southeast Asia over the
past 40 years and their response to climate and human activities,
providing scientific insights for regional ecological protection and sus-
tainable development.

2. Methodology
2.1. Study area

Mainland Southeast Asia is located in Southeast Asia, situated be-
tween China and the South Asian subcontinent. Its approximate latitude
and longitude range are 92.0°E-109.0°E and 5.5°N-28.5°N. It includes
most of the territory of five countries: Thailand, Vietnam, Myanmar,
Laos, and Cambodia, covering an area of about 2.065 million square
kilometers (Fig. 1). It is mainly characterized by a tropical monsoon
climate, with high temperatures year-round. The rainy season lasts from
June to October and is characterized by the prevailing southwest
monsoon with abundant rainfall, while the dry season lasts from
November to May and is characterized by the prevailing northeast
monsoon with less rainfall. Its terrain generally slopes from north to
south, with mountains spreading fan-shaped from north to south. The
northern region is mostly plateaus, hills, and mountains, while the
southern region features deltas and alluvial plains. The major mountain
ranges include the Rakhine Mountains in the west, a series of ranges
extending south from the Shan Plateau in the center, and the Annamite
Range in the east. The major rivers include the Irrawaddy, Salween,
Chao Phraya, Mekong, and Red River (Fig. 1a). The predominant land
use type is forest, followed by cultivated land, shrubland, and grassland.
Overall vegetation conditions are good(Fig. 1b) (Wang et al., 2022a).
The population of Mainland Southeast Asia is approximately 251.4
million in 2023 and is mainly distributed in alluvial plains and coastal
areas.

2.2. Methods

2.2.1. Data and preprocessing

Our foundational data includes two NDVI datasets with different
periods sourced from the Advanced Very High Resolution Radiometer
(AVHRR) of the National Oceanic and Atmospheric Administration
(NOAA) series and the Moderate-resolution Imaging Spectroradiometer
(MODIS) of the Earth Observing System (EOS) series. The time range of
the AVHRR dataset is from June 24, 1981, to December 31, 2013, while
the MODIS dataset has been updating from February 1, 2000, until now.
This study achieved full temporal coverage of remote sensing data since
1982 by integrating these two datasets. Specific information, data
downloads, and preprocessing details are as follows.

(1) The version of the AVHRR NDVI dataset is NOAA CDR AVHRR
NDVI V5 provided by the National Oceanic and Atmospheric Adminis-
tration (NOAA, https://www.ncei.noaa.gov). Its spatial resolution is
5 km, and its temporal resolution is 1 day. We downloaded all data from
1982 to 2013 using Google Earth Engine (GEE, https://earthengine.goo
gle.com/) and interpolated it to a spatial resolution of 1 km using the
nearest neighbor method. Afterward, we used monthly averages and
selected the maximum monthly value within each year to obtain the
annual AVHRR NDVI data at 1 km resolution from 1982 to 2013.

(2) The version of the MODIS NDVI dataset is MOD13A3.061 pro-
vided by the United States Geological Survey (USGS, https://Ipdaac.
usgs.gov). It includes monthly average NDVI data from February 2000
to the present. Its spatial resolution is 1 km. We used GEE to download
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Fig. 1. Geographic information of Mainland Southeast Asia. (a) Location and topography. (b) Main types of land use/land cover.

all data from 2000 to 2023. We obtained annual MODIS NDVI data at
1 km resolution from 2000 to 2023 by synthesizing the annual
maximum values.

In addition, we selected the temperature and precipitation data from
the ERA5-Land reanalysis dataset to analyze vegetation change attri-
bution. Its version is ERA5-Land Monthly Aggregated and its spatial
resolution is 10 km. It includes monthly average temperature and pre-
cipitation data from February 1950 to the present provided by the Eu-
ropean Centre for Medium-Range Weather Forecasts (ECMWF, htt
ps://www.ecmwf.int). We used GEE to download all data from 1982
to 2023 and interpolated it to a resolution of 1 km using the nearest
neighbor method. We calculated the annual average for temperature
data and the annual total for precipitation data based on the monthly
data. Finally, we obtained annual ERA5-Land temperature and precipi-
tation data at 1 km resolution from 1982 to 2023.

2.2.2. Overall technical route

The overall technical route of this study is shown in Fig. 2. First, we
selected two NDVI remote sensing datasets with different periods. Next,
we obtained a long-term and consistent NDVI dataset through data
integration and verified the results. Based on this, we analyzed the long-
term vegetation change characteristics in the region using a trend test
and significance test. Afterward, we combined temperature and pre-
cipitation data to explore the relationship between multi-year temper-
ature changes, precipitation changes, and vegetation changes using
partial correlation analysis. Finally, we quantified the contributions of
climatic factors and human activities to NDVI changes using linear
regression and residual analysis and identified the dominant factors for
NDVI changes in different regions.

AVHRR NDVI MDDIS NDVI

Remote Sensing Data
Integration

NDVI Integration
Dataset

Data Validation

‘ Mann-Kendall Test NDVI Trend and Slope ‘

| '

‘ Partial Correlation NDVI-Glimate Factor Link ‘

Analysis

I !

Multiple Linear Contribution of Climate
Change and Human Activities

Regression
Fig. 2. The overall technical route of this study.

2.2.3. NDVI data integration

The AVHRR NDVI dataset and the MODIS NDVI dataset come from
different remote sensing sensors and have different spatial resolutions,
temporal resolutions, and time coverage. To ensure data continuity and
consistency for long-term studies, we used the overlapping period
(2000-2013) information to integrate data. This process includes two
steps: (1) At the pixel scale, we calculated the average of the AVHRR and
MODIS data for 2000-2013 and the ratio of the averages to obtain the
scaling factor. (2) We used the scaling factor to integrate the AVHRR
data before 2000. Through data integration, we can achieve consistent
treatment of different datasets at the pixel scale to reduce systematic
errors and enhance the continuity and reliability of the data in the time
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series. The formulas are as follows.

> "MODIS,, 4 )
5

SFypy =
" SAVHRRy )
1

(€8]

AVHRR/(X7 o) = SF(xy) ® AVHRR (x 1,) 2)

.

Among them, SF ) is the scaling factor for the pixel (x,y); t; is the
year within the overlapping period of the MODIS and AVHRR data,
which can be taken as 2000-2013 for this study; AVHRRx,, ) and
MODIS,,,, .,) are the AVHRR and MODIS values for the pixel (x,y) att;; t,
is the year from the AVHRR dataset, which can be taken as 1982-2013;
AVHRR (1, and AVHRR|, , = are the original and integrated values of
AVHRR for the pixel (x,y) at t,.

After data integration, we used Average Deviation (AD) and Sym-
metric Mean Absolute Percentage Error (SMAPE) to assess the integra-
tion results and compare them with the original AVHRR data. Both AD
and SMAPE are commonly used error methods. Among them, AD as-
sesses the absolute error and SMAPE assesses the relative error between
the integrated data and MODIS data. The formulas are as follows.

1 ,
AD) = > "AVHRR|,
(ey)

Y. I1)_MODIS(Xv Y, t) 3

2 |AVHRR, w) ~MODISi 5y u)

Y,

4

1
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Among them, n is the total number of pixels in Mainland Southeast
Asia; AD(,,)H] and SMAPE,,, are the AD and SMAPE of the integrated
data compared to MODIS data at the time t;.

The comparison validation results of AVHRR data before and after
integration with MODIS data are shown in Table 1. We observed that the
AD and SMAPE of the integrated data are lower than those of the pre-
integrated data across all years. Specifically, the multi-year average
AD of the integrated data (-0.006) decreased by 98.5 % compared to the
pre-integration value (-0.398), and the SMAPE decreased by 84.6 %
from 0.683 to 0.105. These results show that data integration plays a
crucial role in eliminating systematic errors and enhances the reliability
and consistency of AVHRR data and MODIS data. This provides a solid
foundation for subsequent research.

2.2.4. Trend test

In this study, we used the Mann-Kendall (MK) trend test method to
detect trends in the annual NDVI series. The MK trend test is a non-
parametric method that assesses the strength and significance of the
trend by calculating the rank consistency of pairs of data in a time series.

Table 1
Validation of NDVI data integration.

Year Before integration After integration
AD SMAPE AD SMAPE

2000 -0.394 0.685 -0.010 0.135
2001 -0.383 0.644 0.032 0.087
2002 -0.403 0.688 -0.009 0.108
2003 -0.373 0.630 0.041 0.102
2004 -0.394 0.682 -0.004 0.098
2005 -0.404 0.698 -0.017 0.114
2006 -0.390 0.669 0.007 0.099
2007 -0.415 0.719 -0.037 0.111
2008 -0.395 0.687 -0.015 0.109
2009 -0.409 0.703 -0.023 0.107
2010 -0.390 0.665 0.011 0.099
2011 -0.421 0.724 -0.043 0.104
2012 -0.409 0.701 -0.020 0.096
2013 -0.394 0.669 0.004 0.105
Multi-year average -0.398 0.683 -0.006 0.105
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It is an important tool for analyzing the dynamics of variables in the
fields of meteorology, hydrology, and ecology. The formulas are as fol-
lows.

n-1 n
S=>" sgn(x—x) (5)

=1 j=itl

tau = ———— 6)

Among them, n is the length of the time series, which is 42 in this
study; S is the trend test statistic; x; and x; are the NDVI values for year i
and year j; sgn is the sign function, when the input is greater than 0,
equal to 0, and less than 0, the output values are 1, 0, and —1 respec-
tively. tau is the statistic used to measure the strength of the trend in the
time series. Its value range is [—1, 1], where positive and negative
values indicate an upward and downward trend respectively. The larger
the absolute value, the stronger the trend.

After the MK test, we further tested the significance level of the
trend. The formulas are as follows.

S —sgn(S)

Var(s):no(nfll)so(zn+5) ®
p=2e(1-6(t])) ©)

Among them, Var(S) is the expected variance of statistic S under the
null hypothesis of no trend; t is the standardized statistic for trend test;
is the cumulative distribution function of the standard normal distri-
bution; p is the result indicator for significance test. Its value range is [0,

1] and p close to 0 indicates a significant trend so that we can reject the
null hypothesis (no trend).

2.2.5. Partial Correlation Analysis

This study used partial correlation analysis to research the rela-
tionship between climatic factors (temperature and precipitation) and
NDVI changes. In studies involving two or more climatic factors, partial
correlation analysis can effectively eliminate the interference of other
factors and calculate the correlation of each factor with the dependent
variable one by one. The formula is as follows.

_ Rxy — Rxz ® Ryz
Rxy-z = 2 5
VAR e (1-R)

Among them, Rxy, Rxz, and Ry; are the correlation coefficients for X
with Y, X with Z, Y with Z. Rxy_; is the partial correlation coefficient
between X and Y without the influence of Z. A positive value indicates a
positive correlation between X and Y, while a negative value indicates a
negative correlation.

We further combined formulas 9 and 11 to test the significance level
of the correlation based on calculating the partial correlation co-
efficients. The formula is as follows.

t:ny,Z.\/n—k—z (11)

V 1- R)Z(yfz

Among them, n is the length of the time series, which is 42 in this
study; k is the number of control variables, which is 1 in this study.

(10)

2.2.6. Linear regression analysis

Linear regression analysis is a commonly used method in statistics for
analyzing how a dependent variable is affected by one or more inde-
pendent variables. It has strong predictive and explanatory power and is
widely applied in various fields such as economics, engineering, and
social sciences. In the study, a multiple linear regression model was
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established between NDVI and temperature and precipitation to deter-
mine the regression coefficients of temperature and precipitation. So
that we can calculate the contribution of temperature and precipitation
changes to NDVI changes over more than 40 years. Furthermore, we
quantified the impact of human activities using the residuals. The for-
mulas are as follows.

Y=> aeX+c 12)
i
AYya = Yis — Y5 (13)
AYi =ae AXi (14)
AYp = AY o — ZAYi (15)
i

Among them, Y is the dependent variable, which is NDVI in this
study; X; is the independent variable, where i can take values 1 and 2,
with X; and X, being temperature and precipitation respectively; a; is
the regression coefficient of X;; c is the intercept; AYyq is the change in
Y over the study period, calculated as the average NDVI of the last 5
years (Y;5) minus the average NDVI of the first 5 years (17f5). AX; is the
change in X; over the study period, calculated similarly using the last 5
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years (1982-1986) and the first 5 years (2019-2023). AY; is the
contribution of AX; to the change in the dependent variable. AY} is
determined by regression and residual analysis to reflect the contribu-
tion of human activities.

After quantifying the impacts of temperature, precipitation, and
human activities, we further calculated their contribution ratios to NDVI
changes and identified the dominant factors using a threshold value of
0.5. The formula is as follows.

|AY|

R =Sy
J

(16)

Among them, AY; is the contribution of j-th factor. j can take values
1, 2, and 3, corresponding to temperature, precipitation, and human
activities respectively; CR; is the contribution ratio of the j-th factor.

3. Results

3.1. Vegetation Index and Changes in Mainland Southeast Asia in
1982-2023

This study generated an NDVI dataset for Mainland Southeast Asia
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Fig. 3. Spatial distribution of multi-year average NDVI in Mainland Southeast Asia. The bar chart shows the proportion of the area in the region for each NDVI range.
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from 1982 to 2023 based on remote sensing data integration and
calculated the regional multi-year average NDVI. Its spatial distribution
is shown in Fig. 3. Multi-year average NDVI is 0.797, with 85 % of the
area exceeding 0.7, indicating robust vegetation growth across the re-
gion. Areas with average NDVI in the ranges of 0.7-0.8, 0.8-0.9, and
0.9-1.0 account for 25 %, 57 %, and 3 %, mainly distributed in higher
elevation areas like mountains and plateaus. Areas with average NDVI in
the ranges of 0.5-0.6 and 0.6-0.7 account for 3 % and 11 %, while areas
with NDVI less than 0.5 account for only about 1 %. These results
indicate that the majority of Mainland Southeast Asia has high vegeta-
tion coverage (Ha et al., 2023).

We calculated the changes in multi-year average NDVI for Mainland
Southeast Asia based on 42 years long-term NDVI data by calculating the
difference between the averages from 2019-2023 and 1982-1986, as
shown in Fig. 4. The results indicate that NDVI increased by 78 % of the
area. Among these, the proportions of areas with increases of 0-0.03,
0.03-0.06, 0.06-0.09, 0.09-0.12, and greater than 0.12 are 13 %, 18 %,
18 %, 14 %, and 15 %. NDVI decreased in 22 % of the area (Fig. 4b).
Considering the overall spatial distribution and the area proportion of
each value segment, the NDVI changes in Mainland Southeast Asia are
mainly increasing and the average regional change is 0.054 (Fig. 4a-b).

We further conducted the MK trend test on the annual NDVI series.
The results show that Kendall’s tau value exceeds 0.6, with a signifi-
cance test p-value below 0.01, indicating a significant increasing trend
in NDVI over more than 40 years in Mainland Southeast Asia (Fig. 4c).
Further linear regression results show that the NDVI increased at a rate
of approximately 0.02 every decade from 1982 to 2023. Notably, the
NDVI from 1991 to 1996 was significantly lower than that from 1982 to
1991. This may be attributed to the climate changes caused by the vi-
olent eruption of Mount Pinatubo in Luzon, Philippines, in June 1991,

a. Spatial variation
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which had a strong negative impact on vegetation in Mainland Southeast
Asia (Santer et al., 2014). However, the vegetation index shows a sig-
nificant increasing trend on the broader spatial scale of Mainland
Southeast Asia and over the 40-year time scale, indicating a sustained
improvement in regional vegetation.

3.2. Relationship between vegetation changes and climate factors

Next, we explored the relationship between regional vegetation
changes and climate factors based on temperature and precipitation
changes over the past 42 years in Mainland Southeast Asia, as shown in
Fig. 5. The annual average temperature in the region shows a significant
increasing trend from 1982 to 2023 (Fig. 5a), with a rate of approxi-
mately 0.15°C per decade. Conversely, the annual precipitation depth
shows a significant decreasing trend (Fig. 5c), with a reduction rate of
-53 mm per decade. We conducted a partial correlation analysis of NDVI
with temperature and precipitation at the pixel level. Generally, the
impact of rising temperatures on vegetation in Mainland Southeast Asia
is mainly positive (Fig. 5b). Rising temperatures have a positive impact
on NDVI across 81 % of the land, with 53 % showing significant pro-
motion, mainly in the areas around the Irrawaddy, Mekong, and Red
River. Reduced precipitation can suppress or promote vegetation in land
areas of similar extent. (56 % and 44 %, Fig. 5d). Under the two impacts
counterbalancing each other, the impact of precipitation on NDVI
changes is not significant.

3.3. Impacts of climate changes and human activities on vegetation

Through multiple linear regression and residual analysis, we quan-
tified the impacts of climate factors and human activities on NDVI
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Fig. 4. Spatiotemporal variation of NDVI in Mainland Southeast Asia in 1982-2023. (a) shows the spatial distribution of NDVI changes in the region, calculated by
subtracting the average value of the first 5 years (1982-1986) from the average value of the last 5 years (2019-2023). (b) shows the proportion of the area in the
region for each value range. (c) displays the temporal variation, trend, and slope of the regionally averaged NDVI in the region; where the bar represents 3-year

averaged values and is recorded as the middle year.
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Fig. 5. Changes in temperature and precipitation in Mainland Southeast Asia in 1982-2023 and their impact on vegetation. (a) shows the temperature changes in the
region, and (b) shows the spatial distribution of the temperature’s impact on NDVI and the corresponding area proportion. Similarly, (c) and (d) show the results

related to precipitation.

changes in Mainland Southeast Asia at the pixel level, as shown in Fig. 6.
Generally, temperature changes have the largest impact on NDVI
changes, contributing 0.049, which accounts for about 70 % of the
regional NDVI variation. Human activities followed, contributing 0.014,
approximately 20 % of the regional NDVI variation. The impact of
precipitation changes is the smallest, contributing —-0.007, about 10 % of
the regional NDVI variation.

Specifically, temperature changes have led to an increase in NDVI for
69 % of the land, mainly distributed in the northwestern (Fig. 6a).
Among them, the area with NDVI changes in the ranges of 0-0.05,
0.05-0.1, and greater than or equal to 0.1 accounts for 31 %, 20 %, and
18 %. The area where temperature changes caused a decrease in NDVI

accounts for about 31 %, mainly distributed in the southeastern, espe-
cially in the middle and lower reaches of the Mekong River. Precipita-
tion changes have resulted in an increase in NDVI for 48 % of the land,
mainly distributed in the northeastern (Fig. 6b). The area where pre-
cipitation changes caused a decrease in NDVI accounts for about 52 %,
mainly in the northwestern, particularly distributed in the middle rea-
ches of the Irrawaddy River. Human activities have increased NDVI for
67 % of the land, mainly distributed in lower altitude areas (Fig. 6c¢).
Among them, the area with NDVI changes in the ranges of 0-0.05,
0.05-0.1, and greater than or equal to 0.1 accounts for 35 %, 22 %, and
10 %, respectively. The area where human activities led to a decrease in
NDVI accounts for about 33 %, mainly distributed in the upper reaches
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Fig. 6. The impact of temperature, precipitation, and human activities on NDVI in Mainland Southeast Asia and dominant factors. (a), (b), and (c) show the spatial
distribution of the impact of temperature, precipitation, and human activities on NDVI changes, as well as the area proportion for each value range, respectively. (d)
shows the spatial distribution and area proportion of the dominant factors influencing NDVI changes.
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of the Irrawaddy River and the left bank of the Red River.

Furthermore, we compared the contribution ratios of temperature,
precipitation, and human activities, and analyzed the dominant factors
of NDVI changes at the pixel scale (Fig. 6d). The results indicate that
temperature changes dominate NDVI changes on about 40 % of the land,
mainly distributed in the northwestern, including the Rakhine Moun-
tains, the middle and upper reaches of the Irrawaddy River, and the Shan
Plateau. Next, human activities dominate NDVI changes on 33 % of the
land, mainly distributed in the central and eastern parts, especially in
the middle reaches of the Mekong River. Precipitation changes dominate
the least area, accounting for only 5 % of the region, distributed in the
northern. Additionally, in about 22 % of the area, there are two or more
factors with significant contributions, but none exceeds a contribution
ratio of 0.5. These lands are mainly distributed in the right bank area of
the middle reaches of the Irrawaddy River.

4. Discussion

This study explored the evolution characteristics of NDVI in Main-
land Southeast Asia from 1982 to 2023 and found that the region has
high vegetation coverage, which is on an upward trend. The long-term
average NDVI for the region reaches 0.797 %, and 85 % of the area
has a multi-year average NDVI greater than 0.7. Over the spatial scale
and the temporal scale of more than 40 years, the NDVI has increased at
arate of approximately 0.02 per decade and has been confirmed through
a significance test. However, we also noted the spatiotemporal vari-
ability in regional vegetation changes. For example, due to the negative
impacts of climate changes caused by the 1991 eruption of Mount
Pinatubo in Luzon, Philippines, the average NDVI showed a significant
decline from 1991 to 1996 and only recovered to previous levels after
1997. Over the 42 years, 78 % of the area in Mainland Southeast Asia
experienced an increase in NDVI, while 22 % experienced a decrease. In
densely populated and highly developed open middle reaches and delta
areas, vegetation coverage tends to be low, but NDVI changes have
shown an increasing trend, likely due to agricultural development and
urban greening (Masarei et al., 2021; Shao et al., 2017). In the densely
forested Annamite Range, NDVI changes have shown a decreasing trend,
likely due to the combined impacts of deforestation and climate changes
(Alaniz et al., 2022).

Temperature and precipitation are the most important climatic fac-
tors and affect vegetation growth by influencing processes such as en-
ergy flow, nutrient cycling, and photosynthesis (Pernicova et al., 2024;
Restrepo-Coupe et al., 2024). There is a significant upward trend in
long-term temperatures in Mainland Southeast Asia. Suitable warming
can enhance plant respiration and photosynthetic activity, particularly
in high-altitude energy-limited areas, positively impacting vegetation
dynamics (Pugnaire et al., 2020). Conversely, precipitation in the region
shows a significant decreasing trend. Precipitation changes have both
promoted and inhibited vegetation growth in roughly equivalent areas,
with these differences possibly related to elevation, geology, and vege-
tation types (Di Musciano et al., 2024; Hu et al., 2019; Mehmood et al.,
2024). For example, reduced precipitation and increased temperatures
can lead to increased evaporation and water deficit during the dry
season, which is detrimental for vegetation growth. However, reduced
precipitation can prevent waterlogging and flooding in the rainy season,
which is beneficial for vegetation growth (Gatti et al., 2014; Shen et al.,
2015).

Human activities affect vegetation dynamics significantly, besides
climate changes. Urban expansion, deforestation, and timber trade are
major drivers of vegetation degradation (Santos et al., 2022).
Conversely, with the spread of environmental protection and ecological
construction concepts, humans also play a strong role in vegetation
conservation and restoration in some areas. The vegetation changes
driven by human activities often exceed those affected by climatic fac-
tors in the short term and can establish a foundation for long-term
vegetation dynamics, making their impacts comparable to those of
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climate factors in the long term (Chigbu et al., 2024; Markevych et al.,
2017). In addition, the relationship between land restoration and land
tenure plays a crucial role in mediating these changes. According to the
UNCCD’s Global Land Outlook 2, the effectiveness of land restoration
efforts is closely linked to secure land tenure and governance structures,
which can enhance the success of ecological restoration initiatives
(Chigbu and Nweke-Eze, 2023; Rakotonarivo et al., 2023). However, the
threat of land degradation, driven by poor land management and inse-
cure land tenure, remains a major challenge in the region. The negative
impact of land degradation on vegetation can be exacerbated without
effective land restoration policies that integrate land tenure security
(Chigbu et al., 2021, 2022).

This study used trend test, partial correlation analysis, and linear
regression analysis to conduct a comprehensive study of long-term
vegetation dynamics based on remote sensing data integration and the
construction of an NDVI dataset in Mainland Southeast Asia, which can
address the existing shortcomings in the regional studies and provide
references for regional development. However, this study still has some
issues. For example, the relationship between vegetation index and cli-
matic factors is not strictly linear, and we cannot fully separate the
contribution of each factor using multiple linear regression methods,
which can lead to some errors. Additionally, this study did not distin-
guish between densely populated human activity areas and remote re-
gions and attributed the portion of climate factors that cannot be
explained directly to human activities. Although the spatial distribution
pattern of areas dominated by human activities (Fig. 6¢) is very similar
to that of densely populated areas with human footprints (cropland and
built-up land, Fig. 1b), which partially confirms the reliability of the
results, we acknowledge that this attribution method may overestimate
the importance of human activities’ impact (Ma et al., 2023). Moreover,
vegetation in different regions shows different responses to climate
changes in large-scale studies, so considering more climatic factors
would enhance the reliability of the results. These issues provide di-
rections for improving the research and will be a focus of our future
work.

5. Conclusion

To address the need for vegetation monitoring for sustainable
development in Mainland Southeast Asia, this study used multi-source
remote sensing data to construct a long-term, consistent NDVI dataset
and conducted an in-depth investigation of vegetation dynamics. The
key findings are as follows.

(1) The overall vegetation in Mainland Southeast Asia shows good
growth, and the NDVI shows a significant increasing trend, with an
average rate of approximately 0.02 per decade from 1982 to 2023.

(2) Rising temperatures have a positive impact on vegetation on
81 % of the land, while the impact of reduced precipitation on regional
NDVI changes is not significant.

(3) Temperature changes contribute 70 % (0.049) to the regional
NDVI variation, which is significantly greater than the impacts of human
activities (20 %) and precipitation changes (10 %).

While these results provide important insights, we acknowledge
some limitations. The non-linear relationship between vegetation dy-
namics and climatic factors, as well as the attribution of unexplained
variations to human activities, may introduce uncertainties. Future
research should address these limitations by incorporating additional
climatic factors, distinguishing between areas with varying human ac-
tivity intensities, and further refining the types and impacts of human
activities. Moreover, a deeper exploration of the relationship between
land restoration and land tenure could enrich our understanding of how
land use policies and secure land tenure contribute to sustainable
vegetation management.

Overall, this study serves as a valuable reference for future research
on regional vegetation dynamics, and the generated NDVI dataset can
support decision-making for land use planning and sustainable
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development in Mainland Southeast Asia.
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