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A B S T R A C T

Understanding vegetation dynamics and their influencing factors is essential to regional sustainable development 
and ecological security. However, large-scale and long-term vegetation changes and attribution pose challenges 
due to temporal and quality discrepancies in multi-source remote sensing data. This study developed a research 
framework based on multi-source data integration and conducted a case study in Mainland Southeast Asia. By 
integrating Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectror
adiometer (MODIS) satellite data, we generated a long-term Normalized Difference Vegetation Index (NDVI) 
dataset for 1982–2023. We used trend test, partial correlation analysis, and linear regression analysis to explore 
spatiotemporal vegetation dynamics and their links to climate and human activities. The results show: (1) the 
multi-year average NDVI of Mainland Southeast Asia is 0.797, with 85 % of the area exceeding 0.7, indicating 
robust vegetation growth across the region. The regional NDVI shows a significant increasing trend in 
1982–2023, with a growth rate of 0.02 per decade. (2) The impact of rising temperatures on vegetation in 
Mainland Southeast Asia is mainly positive, increasing NDVI in 81 % of the area. Whereas the impact of reduced 
precipitation on vegetation is negligible. (3) In the quantitative attribution, temperature changes have the largest 
contribution to NDVI changes, contributing 70 % (0.049) to regional NDVI changes (0.056) and dominating 40 % 
of the area. Human activities contribute 20 % (0.014) and dominate 33 % of the area. Precipitation changes 
contribute 10 % (–0.007) and dominate about 5 % of the area. This study offers scientific insights and data 
support for understanding vegetation changes and sustainable development in Mainland Southeast Asia.

1. Introduction

The increase in carbon dioxide in the atmosphere has led to wide
spread and profound impacts on global ecosystems. The IPCC’s Sixth 
Assessment Report emphasized that to meet the 1.5◦C temperature 
target, countries need to take immediate action to achieve carbon 
neutrality (Livingston and Rummukainen, 2023). Vegetation, as a 
crucial carbon sink, plays a significant role in climate regulation, 
reducing atmospheric carbon concentrations, and maintaining biodi
versity (Anees et al., 2024; Salim et al., 2024; Signorile et al., 2024). 
Therefore, it is essential to research vegetation dynamics to assess 
ecosystem health and provide a basis for formulating strategies to 
address climate change (Wang et al., 2023).

In recent years, the rapid development of remote sensing technology 
has provided strong support for monitoring vegetation dynamics. 
Remote sensing data feature extensive coverage, long time series, high 
resolution, and near-real-time acquisition, significantly enhancing the 
accuracy and reliability of vegetation dynamic analysis (Mngadi et al., 
2024). Among various remote sensing indices, the Normalized Differ
ence Vegetation Index (NDVI) has become a common indicator for 
assessing vegetation growth conditions due to its high correlation with 
Net Primary Productivity, photosynthetic efficiency, and Leaf Area 
Index, as well as its accessibility and wide applicability (Chouari, 2024; 
Hu et al., 2022; Reyes-Avila and Baxter, 2024). Vegetation dynamic 
monitoring based on remote sensing NDVI is a crucial area of research in 
climate and environmental change and provides a powerful tool for 
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assessing the ecological security of global key carbon sink areas (Gandhi 
et al., 2015).

Existing studies consistently indicate that global vegetation indices 
have changed significantly due to the combined impacts of climate and 
human activities (Banerjee et al., 2024; Campana et al., 2024; Tuoku 
et al., 2024). Temperature and precipitation are regarded as key climatic 
factors affecting land ecosystems (Hashim et al., 2024; Yuan and Zhou, 
2004). Suitable temperature and precipitation can help vegetation grow 
and maintain ecological balance, while extreme weather events, such as 
high temperature and excessive precipitation, can affect vegetation 
negatively. Mohammat et al. (2013) demonstrated that drought and 
spring cooling led to a reduction in vegetation growth in inland Asia. 
Zhang et al. (2016) noted that temperature and precipitation are major 
drivers of vegetation changes and significantly affect vegetation growth, 
distribution, and carbon balance functions. Furthermore, due to differ
ences in vegetation types, terrain, and other factors across regions, the 
impacts of temperature and precipitation on vegetation show significant 
spatial heterogeneity (Pereira et al., 2024; Zahura et al., 2024). For 
example, Li et al. (2020) found that increased monthly temperature 
promotes the growth of evergreen broadleaf forests, mixed forests, and 
crops, while vegetation growth in tree-grasslands and typical grasslands 
is more significantly influenced by monthly precipitation.

Besides, human activities have significant direct or indirect impacts 
on the surrounding wildlife and environment (Chigbu, 2023; Ntihi
nyurwa et al., 2019; Pathak et al., 2021; Raycraft, 2023). For example, 
protecting existing vegetation and afforestation can increase vegetation 
coverage, while excessive cultivation and overgrazing can lead to 
vegetation degradation and coverage reduction. The IPCC reports have 
consistently highlighted that the impact of human activities on climate 
and environmental systems is significant and increasing (Hashim et al., 
2024; Pathak et al., 2021). Geng et al. (2022) demonstrated that human 
activities had a significant impact on vegetation changes in China from 
2000 to 2015, with different vegetation types responding differently. 
Zhu et al. (2016) found that land use changes contributed the most to 
regional greening in southeast China and the eastern United States. 
Lapola et al. (2023) noted that human disturbances have led to Amazon 
forest degradation and threatened regional ecological security, espe
cially due to edge effects, logging, fires, and human-induced extreme 
drought. With the spread of environmental protection and dual carbon 
theories, scientific vegetation protection and restoration measures have 
been widely applied. This has not only improved the ecological envi
ronment and protected biodiversity but also promoted regional sus
tainable development. For example, Ma et al. (2023) showed that the 
Grain-to-Green Project has reversed the trend of decreasing vegetation 
area and coverage in Southwest China to an increase.

Despite existing research revealing the multifaceted impacts of 
climate and human activities on vegetation, most studies have been 
based on vegetation dynamics analysis from after 2000 due to limita
tions in remote sensing data sources, making it difficult to capture long- 
term changes and driving mechanisms comprehensively (Anees et al., 
2024; Hutchinson et al., 2015). Therefore, it is necessary to extend the 
coverage and research period of consistent remote sensing data through 
multi-source data integration to explore the impacts of long-term 
climate change and human activities on vegetation (Alharbi, 2024). 
This will be significant for advancing historical vegetation dynamics 
research, predicting future vegetation changes, and promoting regional 
sustainable development.

Mainland Southeast Asia is a key region connecting the East Asian 
continent, the South Asian subcontinent and the Malay Archipelago, 
with significant geopolitical and economic importance (Wang et al., 
2022b). However, existing research still lacks analysis of long-term 
vegetation changes in Mainland Southeast Asia (Ha et al., 2023). To 
address the shortcomings in long-term vegetation change research and 
the need for vegetation monitoring for sustainable development in 
Mainland Southeast Asia, this study used multi-source remote sensing 
data to construct a long-term, consistent NDVI dataset and conducted an 

in-depth investigation of vegetation dynamics in Mainland Southeast 
Asia. This study intends to achieve three objectives:

(1) Develop a framework for vegetation change detection and attri
bution analysis based on multi-source remote sensing data integration.

(2) Create an NDVI dataset covering Mainland Southeast Asia since 
1982 to provide data support for long-term vegetation dynamics 
research in the region.

(3) Explore vegetation changes in Mainland Southeast Asia over the 
past 40 years and their response to climate and human activities, 
providing scientific insights for regional ecological protection and sus
tainable development.

2. Methodology

2.1. Study area

Mainland Southeast Asia is located in Southeast Asia, situated be
tween China and the South Asian subcontinent. Its approximate latitude 
and longitude range are 92.0◦E–109.0◦E and 5.5◦N–28.5◦N. It includes 
most of the territory of five countries: Thailand, Vietnam, Myanmar, 
Laos, and Cambodia, covering an area of about 2.065 million square 
kilometers (Fig. 1). It is mainly characterized by a tropical monsoon 
climate, with high temperatures year-round. The rainy season lasts from 
June to October and is characterized by the prevailing southwest 
monsoon with abundant rainfall, while the dry season lasts from 
November to May and is characterized by the prevailing northeast 
monsoon with less rainfall. Its terrain generally slopes from north to 
south, with mountains spreading fan-shaped from north to south. The 
northern region is mostly plateaus, hills, and mountains, while the 
southern region features deltas and alluvial plains. The major mountain 
ranges include the Rakhine Mountains in the west, a series of ranges 
extending south from the Shan Plateau in the center, and the Annamite 
Range in the east. The major rivers include the Irrawaddy, Salween, 
Chao Phraya, Mekong, and Red River (Fig. 1a). The predominant land 
use type is forest, followed by cultivated land, shrubland, and grassland. 
Overall vegetation conditions are good(Fig. 1b) (Wang et al., 2022a). 
The population of Mainland Southeast Asia is approximately 251.4 
million in 2023 and is mainly distributed in alluvial plains and coastal 
areas.

2.2. Methods

2.2.1. Data and preprocessing
Our foundational data includes two NDVI datasets with different 

periods sourced from the Advanced Very High Resolution Radiometer 
(AVHRR) of the National Oceanic and Atmospheric Administration 
(NOAA) series and the Moderate-resolution Imaging Spectroradiometer 
(MODIS) of the Earth Observing System (EOS) series. The time range of 
the AVHRR dataset is from June 24, 1981, to December 31, 2013, while 
the MODIS dataset has been updating from February 1, 2000, until now. 
This study achieved full temporal coverage of remote sensing data since 
1982 by integrating these two datasets. Specific information, data 
downloads, and preprocessing details are as follows.

(1) The version of the AVHRR NDVI dataset is NOAA CDR AVHRR 
NDVI V5 provided by the National Oceanic and Atmospheric Adminis
tration (NOAA, https://www.ncei.noaa.gov). Its spatial resolution is 
5 km, and its temporal resolution is 1 day. We downloaded all data from 
1982 to 2013 using Google Earth Engine (GEE, https://earthengine.goo 
gle.com/) and interpolated it to a spatial resolution of 1 km using the 
nearest neighbor method. Afterward, we used monthly averages and 
selected the maximum monthly value within each year to obtain the 
annual AVHRR NDVI data at 1 km resolution from 1982 to 2013.

(2) The version of the MODIS NDVI dataset is MOD13A3.061 pro
vided by the United States Geological Survey (USGS, https://lpdaac. 
usgs.gov). It includes monthly average NDVI data from February 2000 
to the present. Its spatial resolution is 1 km. We used GEE to download 
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all data from 2000 to 2023. We obtained annual MODIS NDVI data at 
1 km resolution from 2000 to 2023 by synthesizing the annual 
maximum values.

In addition, we selected the temperature and precipitation data from 
the ERA5-Land reanalysis dataset to analyze vegetation change attri
bution. Its version is ERA5-Land Monthly Aggregated and its spatial 
resolution is 10 km. It includes monthly average temperature and pre
cipitation data from February 1950 to the present provided by the Eu
ropean Centre for Medium-Range Weather Forecasts (ECMWF, htt 
ps://www.ecmwf.int). We used GEE to download all data from 1982 
to 2023 and interpolated it to a resolution of 1 km using the nearest 
neighbor method. We calculated the annual average for temperature 
data and the annual total for precipitation data based on the monthly 
data. Finally, we obtained annual ERA5-Land temperature and precipi
tation data at 1 km resolution from 1982 to 2023.

2.2.2. Overall technical route
The overall technical route of this study is shown in Fig. 2. First, we 

selected two NDVI remote sensing datasets with different periods. Next, 
we obtained a long-term and consistent NDVI dataset through data 
integration and verified the results. Based on this, we analyzed the long- 
term vegetation change characteristics in the region using a trend test 
and significance test. Afterward, we combined temperature and pre
cipitation data to explore the relationship between multi-year temper
ature changes, precipitation changes, and vegetation changes using 
partial correlation analysis. Finally, we quantified the contributions of 
climatic factors and human activities to NDVI changes using linear 
regression and residual analysis and identified the dominant factors for 
NDVI changes in different regions.

2.2.3. NDVI data integration
The AVHRR NDVI dataset and the MODIS NDVI dataset come from 

different remote sensing sensors and have different spatial resolutions, 
temporal resolutions, and time coverage. To ensure data continuity and 
consistency for long-term studies, we used the overlapping period 
(2000–2013) information to integrate data. This process includes two 
steps: (1) At the pixel scale, we calculated the average of the AVHRR and 
MODIS data for 2000–2013 and the ratio of the averages to obtain the 
scaling factor. (2) We used the scaling factor to integrate the AVHRR 
data before 2000. Through data integration, we can achieve consistent 
treatment of different datasets at the pixel scale to reduce systematic 
errors and enhance the continuity and reliability of the data in the time 

Fig. 1. Geographic information of Mainland Southeast Asia. (a) Location and topography. (b) Main types of land use/land cover.

Fig. 2. The overall technical route of this study.
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series. The formulas are as follows. 

SF(x,y) =

∑

t1
MODIS(x, y, t1)

∑

t1
AVHRR(x, y, t1)

(1) 

AVHRRʹ
(x, y, t2) = SF(x,y) • AVHRR(x,y,t2) (2) 

Among them, SF(x,y) is the scaling factor for the pixel (x,y); t1 is the 
year within the overlapping period of the MODIS and AVHRR data, 
which can be taken as 2000–2013 for this study; AVHRR(x,y, t1) and 
MODIS(x,y, t1) are the AVHRR and MODIS values for the pixel (x, y) at t1; t2 

is the year from the AVHRR dataset, which can be taken as 1982–2013; 
AVHRR(x,y,t2) and AVHRRʹ

(x,y,t2) are the original and integrated values of 
AVHRR for the pixel (x, y) at t2.

After data integration, we used Average Deviation (AD) and Sym
metric Mean Absolute Percentage Error (SMAPE) to assess the integra
tion results and compare them with the original AVHRR data. Both AD 
and SMAPE are commonly used error methods. Among them, AD as
sesses the absolute error and SMAPE assesses the relative error between 
the integrated data and MODIS data. The formulas are as follows. 

AD(t1) =
1
n
•
∑

(x,y)

AVHRRʹ
(x, y, t1) − MODIS(x, y, t1) (3) 

SMAPE(t1) =
1
n
•
∑

(x,y)

2 •

⃒
⃒
⃒AVHRRʹ

(x, y, t1) − MODIS(x, y, t1)

⃒
⃒
⃒

⃒
⃒
⃒AVHRRʹ

(x, y, t1)

⃒
⃒
⃒+

⃒
⃒MODIS(x, y,t1)

⃒
⃒

(4) 

Among them, n is the total number of pixels in Mainland Southeast 
Asia; AD(t1)和 and SMAPE(t1) are the AD and SMAPE of the integrated 
data compared to MODIS data at the time t1.

The comparison validation results of AVHRR data before and after 
integration with MODIS data are shown in Table 1. We observed that the 
AD and SMAPE of the integrated data are lower than those of the pre- 
integrated data across all years. Specifically, the multi-year average 
AD of the integrated data (–0.006) decreased by 98.5 % compared to the 
pre-integration value (–0.398), and the SMAPE decreased by 84.6 % 
from 0.683 to 0.105. These results show that data integration plays a 
crucial role in eliminating systematic errors and enhances the reliability 
and consistency of AVHRR data and MODIS data. This provides a solid 
foundation for subsequent research.

2.2.4. Trend test
In this study, we used the Mann-Kendall (MK) trend test method to 

detect trends in the annual NDVI series. The MK trend test is a non- 
parametric method that assesses the strength and significance of the 
trend by calculating the rank consistency of pairs of data in a time series. 

It is an important tool for analyzing the dynamics of variables in the 
fields of meteorology, hydrology, and ecology. The formulas are as fol
lows. 

S =
∑n− 1

i=1

∑n

j=i+1
sgn

(
xj − xi

)
(5) 

tau =
2 • S

n • (n − 1)
(6) 

Among them, n is the length of the time series, which is 42 in this 
study; S is the trend test statistic; xi and xj are the NDVI values for year i 
and year j; sgn is the sign function, when the input is greater than 0, 
equal to 0, and less than 0, the output values are 1, 0, and − 1 respec
tively. tau is the statistic used to measure the strength of the trend in the 
time series. Its value range is [ − 1, 1], where positive and negative 
values indicate an upward and downward trend respectively. The larger 
the absolute value, the stronger the trend.

After the MK test, we further tested the significance level of the 
trend. The formulas are as follows. 

t =
S − sgn(S)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(S)

√ (7) 

Var(S) =
n • (n − 1) • (2n + 5)

18
(8) 

p = 2 • (1 − θ(|t| ) ) (9) 

Among them, Var(S) is the expected variance of statistic S under the 
null hypothesis of no trend; t is the standardized statistic for trend test; θ 
is the cumulative distribution function of the standard normal distri
bution; p is the result indicator for significance test. Its value range is [0,
1] and p close to 0 indicates a significant trend so that we can reject the 
null hypothesis (no trend).

2.2.5. Partial Correlation Analysis
This study used partial correlation analysis to research the rela

tionship between climatic factors (temperature and precipitation) and 
NDVI changes. In studies involving two or more climatic factors, partial 
correlation analysis can effectively eliminate the interference of other 
factors and calculate the correlation of each factor with the dependent 
variable one by one. The formula is as follows. 

RXY− Z =
RXY − RXZ • RYZ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(1 − R2
XZ) • (1 − R2

YZ)

√ (10) 

Among them, RXY, RXZ, and RYZ are the correlation coefficients for X 
with Y, X with Z, Y with Z. RXY− Z is the partial correlation coefficient 
between X and Y without the influence of Z. A positive value indicates a 
positive correlation between X and Y, while a negative value indicates a 
negative correlation.

We further combined formulas 9 and 11 to test the significance level 
of the correlation based on calculating the partial correlation co
efficients. The formula is as follows. 

t =
RXY− Z •

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n − k − 2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − R2
XY− Z

√ (11) 

Among them, n is the length of the time series, which is 42 in this 
study; k is the number of control variables, which is 1 in this study.

2.2.6. Linear regression analysis
Linear regression analysis is a commonly used method in statistics for 

analyzing how a dependent variable is affected by one or more inde
pendent variables. It has strong predictive and explanatory power and is 
widely applied in various fields such as economics, engineering, and 
social sciences. In the study, a multiple linear regression model was 

Table 1 
Validation of NDVI data integration.

Year Before integration After integration

AD SMAPE AD SMAPE

2000 –0.394 0.685 –0.010 0.135
2001 –0.383 0.644 0.032 0.087
2002 –0.403 0.688 –0.009 0.108
2003 –0.373 0.630 0.041 0.102
2004 –0.394 0.682 –0.004 0.098
2005 –0.404 0.698 –0.017 0.114
2006 –0.390 0.669 0.007 0.099
2007 –0.415 0.719 –0.037 0.111
2008 –0.395 0.687 –0.015 0.109
2009 –0.409 0.703 –0.023 0.107
2010 –0.390 0.665 0.011 0.099
2011 –0.421 0.724 –0.043 0.104
2012 –0.409 0.701 –0.020 0.096
2013 –0.394 0.669 0.004 0.105
Multi-year average –0.398 0.683 –0.006 0.105
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established between NDVI and temperature and precipitation to deter
mine the regression coefficients of temperature and precipitation. So 
that we can calculate the contribution of temperature and precipitation 
changes to NDVI changes over more than 40 years. Furthermore, we 
quantified the impact of human activities using the residuals. The for
mulas are as follows. 

Y =
∑

i
ai • Xi + c (12) 

ΔYtotal = Yl5 − Yf5 (13) 

ΔYi = ai • ΔXi (14) 

ΔYh = ΔYtotal −
∑

i
ΔYi (15) 

Among them, Y is the dependent variable, which is NDVI in this 
study; Xi is the independent variable, where i can take values 1 and 2, 
with X1 and X2 being temperature and precipitation respectively; ai is 
the regression coefficient of Xi; c is the intercept; ΔYtotal is the change in 
Y over the study period, calculated as the average NDVI of the last 5 
years (Yl5) minus the average NDVI of the first 5 years (Yf5). ΔXi is the 
change in Xi over the study period, calculated similarly using the last 5 

years (1982–1986) and the first 5 years (2019–2023). ΔYi is the 
contribution of ΔXi to the change in the dependent variable. ΔYh is 
determined by regression and residual analysis to reflect the contribu
tion of human activities.

After quantifying the impacts of temperature, precipitation, and 
human activities, we further calculated their contribution ratios to NDVI 
changes and identified the dominant factors using a threshold value of 
0.5. The formula is as follows. 

CRj =

⃒
⃒ΔYj

⃒
⃒

∑

j

⃒
⃒ΔYj

⃒
⃒

(16) 

Among them, ΔYj is the contribution of j-th factor. j can take values 
1, 2, and 3, corresponding to temperature, precipitation, and human 
activities respectively; CRj is the contribution ratio of the j-th factor.

3. Results

3.1. Vegetation Index and Changes in Mainland Southeast Asia in 
1982–2023

This study generated an NDVI dataset for Mainland Southeast Asia 

Fig. 3. Spatial distribution of multi-year average NDVI in Mainland Southeast Asia. The bar chart shows the proportion of the area in the region for each NDVI range.
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from 1982 to 2023 based on remote sensing data integration and 
calculated the regional multi-year average NDVI. Its spatial distribution 
is shown in Fig. 3. Multi-year average NDVI is 0.797, with 85 % of the 
area exceeding 0.7, indicating robust vegetation growth across the re
gion. Areas with average NDVI in the ranges of 0.7–0.8, 0.8–0.9, and 
0.9–1.0 account for 25 %, 57 %, and 3 %, mainly distributed in higher 
elevation areas like mountains and plateaus. Areas with average NDVI in 
the ranges of 0.5–0.6 and 0.6–0.7 account for 3 % and 11 %, while areas 
with NDVI less than 0.5 account for only about 1 %. These results 
indicate that the majority of Mainland Southeast Asia has high vegeta
tion coverage (Ha et al., 2023).

We calculated the changes in multi-year average NDVI for Mainland 
Southeast Asia based on 42 years long-term NDVI data by calculating the 
difference between the averages from 2019–2023 and 1982–1986, as 
shown in Fig. 4. The results indicate that NDVI increased by 78 % of the 
area. Among these, the proportions of areas with increases of 0–0.03, 
0.03–0.06, 0.06–0.09, 0.09–0.12, and greater than 0.12 are 13 %, 18 %, 
18 %, 14 %, and 15 %. NDVI decreased in 22 % of the area (Fig. 4b). 
Considering the overall spatial distribution and the area proportion of 
each value segment, the NDVI changes in Mainland Southeast Asia are 
mainly increasing and the average regional change is 0.054 (Fig. 4a–b).

We further conducted the MK trend test on the annual NDVI series. 
The results show that Kendall’s tau value exceeds 0.6, with a signifi
cance test p-value below 0.01, indicating a significant increasing trend 
in NDVI over more than 40 years in Mainland Southeast Asia (Fig. 4c). 
Further linear regression results show that the NDVI increased at a rate 
of approximately 0.02 every decade from 1982 to 2023. Notably, the 
NDVI from 1991 to 1996 was significantly lower than that from 1982 to 
1991. This may be attributed to the climate changes caused by the vi
olent eruption of Mount Pinatubo in Luzon, Philippines, in June 1991, 

which had a strong negative impact on vegetation in Mainland Southeast 
Asia (Santer et al., 2014). However, the vegetation index shows a sig
nificant increasing trend on the broader spatial scale of Mainland 
Southeast Asia and over the 40-year time scale, indicating a sustained 
improvement in regional vegetation.

3.2. Relationship between vegetation changes and climate factors

Next, we explored the relationship between regional vegetation 
changes and climate factors based on temperature and precipitation 
changes over the past 42 years in Mainland Southeast Asia, as shown in 
Fig. 5. The annual average temperature in the region shows a significant 
increasing trend from 1982 to 2023 (Fig. 5a), with a rate of approxi
mately 0.15◦C per decade. Conversely, the annual precipitation depth 
shows a significant decreasing trend (Fig. 5c), with a reduction rate of 
–53 mm per decade. We conducted a partial correlation analysis of NDVI 
with temperature and precipitation at the pixel level. Generally, the 
impact of rising temperatures on vegetation in Mainland Southeast Asia 
is mainly positive (Fig. 5b). Rising temperatures have a positive impact 
on NDVI across 81 % of the land, with 53 % showing significant pro
motion, mainly in the areas around the Irrawaddy, Mekong, and Red 
River. Reduced precipitation can suppress or promote vegetation in land 
areas of similar extent. (56 % and 44 %, Fig. 5d). Under the two impacts 
counterbalancing each other, the impact of precipitation on NDVI 
changes is not significant.

3.3. Impacts of climate changes and human activities on vegetation

Through multiple linear regression and residual analysis, we quan
tified the impacts of climate factors and human activities on NDVI 

Fig. 4. Spatiotemporal variation of NDVI in Mainland Southeast Asia in 1982–2023. (a) shows the spatial distribution of NDVI changes in the region, calculated by 
subtracting the average value of the first 5 years (1982–1986) from the average value of the last 5 years (2019–2023). (b) shows the proportion of the area in the 
region for each value range. (c) displays the temporal variation, trend, and slope of the regionally averaged NDVI in the region; where the bar represents 3-year 
averaged values and is recorded as the middle year.
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changes in Mainland Southeast Asia at the pixel level, as shown in Fig. 6. 
Generally, temperature changes have the largest impact on NDVI 
changes, contributing 0.049, which accounts for about 70 % of the 
regional NDVI variation. Human activities followed, contributing 0.014, 
approximately 20 % of the regional NDVI variation. The impact of 
precipitation changes is the smallest, contributing –0.007, about 10 % of 
the regional NDVI variation.

Specifically, temperature changes have led to an increase in NDVI for 
69 % of the land, mainly distributed in the northwestern (Fig. 6a). 
Among them, the area with NDVI changes in the ranges of 0–0.05, 
0.05–0.1, and greater than or equal to 0.1 accounts for 31 %, 20 %, and 
18 %. The area where temperature changes caused a decrease in NDVI 

accounts for about 31 %, mainly distributed in the southeastern, espe
cially in the middle and lower reaches of the Mekong River. Precipita
tion changes have resulted in an increase in NDVI for 48 % of the land, 
mainly distributed in the northeastern (Fig. 6b). The area where pre
cipitation changes caused a decrease in NDVI accounts for about 52 %, 
mainly in the northwestern, particularly distributed in the middle rea
ches of the Irrawaddy River. Human activities have increased NDVI for 
67 % of the land, mainly distributed in lower altitude areas (Fig. 6c). 
Among them, the area with NDVI changes in the ranges of 0–0.05, 
0.05–0.1, and greater than or equal to 0.1 accounts for 35 %, 22 %, and 
10 %, respectively. The area where human activities led to a decrease in 
NDVI accounts for about 33 %, mainly distributed in the upper reaches 

Fig. 5. Changes in temperature and precipitation in Mainland Southeast Asia in 1982–2023 and their impact on vegetation. (a) shows the temperature changes in the 
region, and (b) shows the spatial distribution of the temperature’s impact on NDVI and the corresponding area proportion. Similarly, (c) and (d) show the results 
related to precipitation.
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Fig. 6. The impact of temperature, precipitation, and human activities on NDVI in Mainland Southeast Asia and dominant factors. (a), (b), and (c) show the spatial 
distribution of the impact of temperature, precipitation, and human activities on NDVI changes, as well as the area proportion for each value range, respectively. (d) 
shows the spatial distribution and area proportion of the dominant factors influencing NDVI changes.
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of the Irrawaddy River and the left bank of the Red River.
Furthermore, we compared the contribution ratios of temperature, 

precipitation, and human activities, and analyzed the dominant factors 
of NDVI changes at the pixel scale (Fig. 6d). The results indicate that 
temperature changes dominate NDVI changes on about 40 % of the land, 
mainly distributed in the northwestern, including the Rakhine Moun
tains, the middle and upper reaches of the Irrawaddy River, and the Shan 
Plateau. Next, human activities dominate NDVI changes on 33 % of the 
land, mainly distributed in the central and eastern parts, especially in 
the middle reaches of the Mekong River. Precipitation changes dominate 
the least area, accounting for only 5 % of the region, distributed in the 
northern. Additionally, in about 22 % of the area, there are two or more 
factors with significant contributions, but none exceeds a contribution 
ratio of 0.5. These lands are mainly distributed in the right bank area of 
the middle reaches of the Irrawaddy River.

4. Discussion

This study explored the evolution characteristics of NDVI in Main
land Southeast Asia from 1982 to 2023 and found that the region has 
high vegetation coverage, which is on an upward trend. The long-term 
average NDVI for the region reaches 0.797 %, and 85 % of the area 
has a multi-year average NDVI greater than 0.7. Over the spatial scale 
and the temporal scale of more than 40 years, the NDVI has increased at 
a rate of approximately 0.02 per decade and has been confirmed through 
a significance test. However, we also noted the spatiotemporal vari
ability in regional vegetation changes. For example, due to the negative 
impacts of climate changes caused by the 1991 eruption of Mount 
Pinatubo in Luzon, Philippines, the average NDVI showed a significant 
decline from 1991 to 1996 and only recovered to previous levels after 
1997. Over the 42 years, 78 % of the area in Mainland Southeast Asia 
experienced an increase in NDVI, while 22 % experienced a decrease. In 
densely populated and highly developed open middle reaches and delta 
areas, vegetation coverage tends to be low, but NDVI changes have 
shown an increasing trend, likely due to agricultural development and 
urban greening (Masarei et al., 2021; Shao et al., 2017). In the densely 
forested Annamite Range, NDVI changes have shown a decreasing trend, 
likely due to the combined impacts of deforestation and climate changes 
(Alaniz et al., 2022).

Temperature and precipitation are the most important climatic fac
tors and affect vegetation growth by influencing processes such as en
ergy flow, nutrient cycling, and photosynthesis (Pernicová et al., 2024; 
Restrepo-Coupe et al., 2024). There is a significant upward trend in 
long-term temperatures in Mainland Southeast Asia. Suitable warming 
can enhance plant respiration and photosynthetic activity, particularly 
in high-altitude energy-limited areas, positively impacting vegetation 
dynamics (Pugnaire et al., 2020). Conversely, precipitation in the region 
shows a significant decreasing trend. Precipitation changes have both 
promoted and inhibited vegetation growth in roughly equivalent areas, 
with these differences possibly related to elevation, geology, and vege
tation types (Di Musciano et al., 2024; Hu et al., 2019; Mehmood et al., 
2024). For example, reduced precipitation and increased temperatures 
can lead to increased evaporation and water deficit during the dry 
season, which is detrimental for vegetation growth. However, reduced 
precipitation can prevent waterlogging and flooding in the rainy season, 
which is beneficial for vegetation growth (Gatti et al., 2014; Shen et al., 
2015).

Human activities affect vegetation dynamics significantly, besides 
climate changes. Urban expansion, deforestation, and timber trade are 
major drivers of vegetation degradation (Santos et al., 2022). 
Conversely, with the spread of environmental protection and ecological 
construction concepts, humans also play a strong role in vegetation 
conservation and restoration in some areas. The vegetation changes 
driven by human activities often exceed those affected by climatic fac
tors in the short term and can establish a foundation for long-term 
vegetation dynamics, making their impacts comparable to those of 

climate factors in the long term (Chigbu et al., 2024; Markevych et al., 
2017). In addition, the relationship between land restoration and land 
tenure plays a crucial role in mediating these changes. According to the 
UNCCD’s Global Land Outlook 2, the effectiveness of land restoration 
efforts is closely linked to secure land tenure and governance structures, 
which can enhance the success of ecological restoration initiatives 
(Chigbu and Nweke-Eze, 2023; Rakotonarivo et al., 2023). However, the 
threat of land degradation, driven by poor land management and inse
cure land tenure, remains a major challenge in the region. The negative 
impact of land degradation on vegetation can be exacerbated without 
effective land restoration policies that integrate land tenure security 
(Chigbu et al., 2021, 2022).

This study used trend test, partial correlation analysis, and linear 
regression analysis to conduct a comprehensive study of long-term 
vegetation dynamics based on remote sensing data integration and the 
construction of an NDVI dataset in Mainland Southeast Asia, which can 
address the existing shortcomings in the regional studies and provide 
references for regional development. However, this study still has some 
issues. For example, the relationship between vegetation index and cli
matic factors is not strictly linear, and we cannot fully separate the 
contribution of each factor using multiple linear regression methods, 
which can lead to some errors. Additionally, this study did not distin
guish between densely populated human activity areas and remote re
gions and attributed the portion of climate factors that cannot be 
explained directly to human activities. Although the spatial distribution 
pattern of areas dominated by human activities (Fig. 6c) is very similar 
to that of densely populated areas with human footprints (cropland and 
built-up land, Fig. 1b), which partially confirms the reliability of the 
results, we acknowledge that this attribution method may overestimate 
the importance of human activities’ impact (Ma et al., 2023). Moreover, 
vegetation in different regions shows different responses to climate 
changes in large-scale studies, so considering more climatic factors 
would enhance the reliability of the results. These issues provide di
rections for improving the research and will be a focus of our future 
work.

5. Conclusion

To address the need for vegetation monitoring for sustainable 
development in Mainland Southeast Asia, this study used multi-source 
remote sensing data to construct a long-term, consistent NDVI dataset 
and conducted an in-depth investigation of vegetation dynamics. The 
key findings are as follows.

(1) The overall vegetation in Mainland Southeast Asia shows good 
growth, and the NDVI shows a significant increasing trend, with an 
average rate of approximately 0.02 per decade from 1982 to 2023.

(2) Rising temperatures have a positive impact on vegetation on 
81 % of the land, while the impact of reduced precipitation on regional 
NDVI changes is not significant.

(3) Temperature changes contribute 70 % (0.049) to the regional 
NDVI variation, which is significantly greater than the impacts of human 
activities (20 %) and precipitation changes (10 %).

While these results provide important insights, we acknowledge 
some limitations. The non-linear relationship between vegetation dy
namics and climatic factors, as well as the attribution of unexplained 
variations to human activities, may introduce uncertainties. Future 
research should address these limitations by incorporating additional 
climatic factors, distinguishing between areas with varying human ac
tivity intensities, and further refining the types and impacts of human 
activities. Moreover, a deeper exploration of the relationship between 
land restoration and land tenure could enrich our understanding of how 
land use policies and secure land tenure contribute to sustainable 
vegetation management.

Overall, this study serves as a valuable reference for future research 
on regional vegetation dynamics, and the generated NDVI dataset can 
support decision-making for land use planning and sustainable 
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development in Mainland Southeast Asia.
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