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Abstract  Accurate and timely landslide mapping plays a critical 
role in emergency response and long-term land use planning. Deep 
learning–based methods represented by convolutional neural net-
works have been widely exploited in automatic landslide detection  
for their outstanding capability of feature representation and end-
to-end learning mode. Most of the recent deep learning–based stud-
ies used toll-access high-resolution imagery for landslide detection. 
Considering demands for the future large-scale landslide mapping, 
this study aims to develop a new deep learning–based method  
to detect landslides using medium-resolution imagery and digi-
tal elevation model (DEM) data which are free-access and covered  
globally. Firstly, a workflow for constructing the landslide dataset 
is developed. Then, we design a semantic segmentation model to 
learn deep features and generate per-pixel landslide predictions. 
Specifically, the proposed network has a dual-encoder architecture 
with feature fusion to hierarchically represent deep features from 
the optical bands and DEM data. We also employ a self-attention 
module in the decoder of the proposed network to improve the 
performance. Experiments on two regions demonstrate that our 
method achieves the best F1 score of 79.24%, outperforming Seg-
Net, U-Net, and Attention U-Net, the models popularly used in the 
semantic segmentation–based landslide detection. The proposed 
method may have an application potential in disaster risk assess-
ment and post-disaster reconstruction and provide a technical ref-
erence for the large-scale landslide mapping in the future.

Keywords  Landslide detection · U-Net · Semantic segmentation · 
Deep learning · Remote Sensing · Medium-resolution imagery

Introduction
Landslides are regarded as one of the most serious natural haz-
ards and commonly occur in mountainous regions (Bacha et al. 
2020; Mohan et al. 2021). Landslide triggers include natural events 
such as earthquakes, volcanic eruptions, intensive rainfalls, and 
climate change, as well as anthropogenic factors like urban sprawl, 
deforestation, underground mining, and constructing roads 
(McColl 2015). Landslides pose a significant threat to properties 
and human lives (Ye et al. 2019). Detecting landslides timely and 
promptly can support pre-disaster prevention, post-disaster relief, 
and long-term land-use planning (Puente-Sotomayor et al. 2021; 
Roccati et al. 2021). Traditional landslide detection methods based 
on field surveys usually consume a large amount of working time 
and financial resources. Remote sensing techniques are therefore 
considered primary research tools for rapid mapping of landslides.

Approaches for landslide detection based on remote sensing 
include visual interpretation (Zhang et al. 2019), change detection-
based methods (Zhao et  al. 2017b), knowledge-based methods 

(Martha et al. 2011; Keyport et al. 2018), machine learning methods 
(Ma et al. 2021; Wei et al. 2022), and deep learning methods (Mohan 
et al. 2021; Meena et al. 2022). Among these methods, visual interpre-
tation is time-consuming and costly, requiring strong professional 
backgrounds for interpreters. Change detection–based methods 
require at least two satellite images photographed pre-event and 
post-event, respectively. However, due to weather conditions, it is 
often difficult to obtain available optical satellite images after land-
slides, especially those triggered by intensive rainfalls (Mondini et al. 
2011). Synthetic-aperture radar (SAR) data is not affected by weath-
ers, though landslide detection using SAR data usually obtained low 
accuracies (Liu et al. 2021b). Early researches used knowledge-based 
methods for landslide detection, such as threshold segmentation 
(Martha et al. 2011), object-oriented segmentation (Keyport et al. 
2018; Bacha et al. 2020), and image enhancement (Yu and Chen 
2017). However, knowledge-based methods have low transferabil-
ity, because knowledge-based methods design rule sets typically for 
specific study areas (Bacha et al. 2020).

Machine learning (ML) classifies information automatically 
via model training, without man-designed classification rule sets  
(Ma et al. 2021). ML methods include support vector machine 
(Huang and Zhao 2018), random forest (Stumpf and Kerle 2011; 
Taalab et al. 2018), logistic regression (Wang et al. 2013; Budimir 
et al. 2015), and Bayesian classifier (Tsangaratos and Ilia 2016). For 
example, Tavakkoli Piralilou et al. (2019) integrated classification 
results computed by logistic regression, multi-layer perception, 
and random forest using Dempster-Shafer theory and obtained 
landslide inventory of Rasuwa, Nepal. The classification perfor-
mance of ML methods is largely affected by the discernibility of 
input features. Thus, ML methods pose a high requirement for 
data preprocessing and feature engineering (Ma et al. 2021).

Deep learning (DL) has been widely applied in remote sensing 
image information extraction (Yuan et al. 2020), such as remote 
sensing scene classification (Tang et al. 2021; Peng et al. 2022), object 
detection (Sun et al. 2021; Zakria et al. 2022), and land use and land 
cover classification (Fitton et al. 2022; Zhu et al. 2022). DL methods 
outperform ML methods, because DL models can learn a hier-
archical representation of data by layer-wise feature aggregation 
and message propagation, and extract discriminative high-level 
semantic features of remote sensing imagery (Yuan et al. 2020). DL 
methods for landslide detection can be grouped into object detec-
tion–based methods and semantic segmentation–based methods.

Object detection–based methods use bounding boxes to locate 
landslides. Object detection models in the computer vision domain, 
such as Region-based Convolutional Neural Network (R-CNN) 
series (Girshick 2015; Ren et al. 2015; He et al. 2017) and You-Only-
Look-Once (YOLO) series (Redmon et al. 2016; Bochkovskiy et al. 
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2020), were used in landslide detection in recent studies. Ullo et al. 
(2021) exploited Mask R-CNN (He et al. 2017) to detect landslides 
using unmanned aerial vehicle images. Cheng et al. (2021) inte-
grated an attention mechanism and YOLO v4 model to propose 
a small attentional YOLO (YOLO-SA) model for landslide detec-
tion. Object detection–based methods only label locations of land-
slides via rectangular boxes but not delineate exact boundaries of 
landslides.

Semantic segmentation–based methods aim to classify landslide 
pixels and non-landslide pixels to delineate locations, extents, and 
boundaries of landslides, belonging to the per-pixel segmenta-
tion task. Satellite imagery of high spatial resolution is commonly 
used in recent studies of semantic segmentation-based landslide 
detection (Yi and Zhang 2020; Chen et al. 2021a, b; Liu et al. 2021a; 
Su et al. 2021; Du et al. 2021; Yang et al. 2022; Yu et al. 2022). Du 
et al. (2021) built a landslide dataset which contained Google Earth 
images of 2.39-m spatial resolution mainly collected in the Jinsha 
River basin and corresponding per-pixel annotations. They con-
ducted Fully Convolutional Network (FCN) (Long et al. 2015), U-Net 
(Ronneberger et al. 2015), Pyramid Scene Parsing Network (PSPNet) 
(Zhao et al. 2017a), Global Convolutional Network (GCN) (Peng 
et al. 2017), DeepLab v3 (Chen et al. 2017), and DeepLab v3 + (Chen 
et al. 2018) on their landslide database to verify the effectiveness of 
these semantic segmentation models on landslide detection task. Yi 
and Zhang (2020) proposed a new approach named as LandsNet for 
earthquake-triggered landslide detection, using RapidEye images of 
5-m spatial resolution. They used 3 residential blocks for the encod-
ing part and another 3 residential blocks for the decoding part and 
exploited the attention module proposed in Attention U-Net and 
multiscale fusion operations to improve performance. LandsNet 
outperformed Residential U-Net (ResU-Net) (Ronneberger et al. 
2015; He et al. 2016) and Deep U-Net (Li et al. 2018) in their study 
areas. Yang et al. (2022) proposed CTransUNet which was modi-
fied from Transformer U-net (TransUNet) (Chen et al. 2021a, b) 
by exploiting the convolutional block attention module (CBAM) 
(Woo et al. 2018) in the decoder. The authors applied CTransUNet 
on landslide detection using Planet imagery of 3 m resolution and 
TripleSat imagery of 0.8 m resolution. Yu et al. (2022) proposed a 
hierarchical deconvolution network called as HADeenNet enabled 
with an attention module to enhance multi-scale features. They 
used HADeenNet on satellite imagery of up to 0.8 m resolution to 
detect landslides and obtained the best F1 score of 53.57%. Above 
semantic segmentation–based methods were mainly experimented 
on high-resolution imagery that is toll-access and with a low fre-
quency of revisit. It is hard to collect accessible high-resolution 
images covered over the study areas for landslide rapid mapping.

In contrast, due to open access, global coverage, and frequent 
revisit of medium-resolution satellite imagery, using medium-
resolution imagery for landslide mapping is a necessary part of 
future research on large-scale and long-term hazard information 
extraction. A few researchers (Ghorbanzadeh et al. 2021, 2022a; L. 
Bragagnolo et al. 2021) tried to use medium-resolution imagery 
to detect landslides. L. Bragagnolo et al. (2021) used Band 6, Band 
5, and Band 4 of Landsat 8 imagery of 30 m resolution to map 
landslides in Nepal via U-Net, and they obtained an F1 score of 
67%. Ghorbanzadeh et al. (2021) used Sentinel-2 imagery of 10 m 
resolution to detect landslides. They studied the performance and 
transferability of U-Net and ResU-Net on various landslide datasets 

and obtained the highest F1 score of 72.94%. Besides, multi-source 
data, such as digital elevation model (DEM), can help with land-
slide mapping since the development and movement of landslides 
are inextricably linked with terrains (Su et al. 2021). Ghorbanzadeh 
et al. (2022b) released a landslide benchmark data called Land-
slide4Sense by combining Sentinel-2 optical bands, slope data, and 
elevation data in 2022, which can promote the application of land-
slide detection and inspire further studies on mapping landslides 
using multi-source data. These studies mentioned above have tested 
the performance in landslide mapping using medium-resolution 
imagery of semantic segmentation models which originate from the 
computer vision domain, especially the U-shaped ones. However, 
compared with natural images or medical images used in the com-
puter vision domain, remote sensing images have much more com-
plicated scenes and abundant details so that it is harder to extract 
information from remote sensing images. There still exists space to 
design new methods in order to improve performance of landslide 
mapping using medium-resolution remote sensing imagery.

In all, our main objective is to propose a new semantic seg-
mentation method for landslide detection using the open-access 
medium-resolution satellite imagery and DEM data. We design a 
dual-encoder architecture to learn deep features from the multi-
source data and exploit a self-attention module to improve the per-
formance. We compare the proposed method with other semantic 
segmentation models, i.e., SegNet, U-Net, and Attention U-Net to 
showcase the performance and potential of the proposed method 
for landslide detection using medium-resolution imagery.

Study area and data

Study area
Figure 1a shows the locations of the study areas in this paper. As 
presented in Fig. 1b, the first study area, the Wen-Du study area, is 
located at the junction of Wenchuan and Dujiangyan Counties of 
Sichuan province, China, with a total area of 334.06 km2. It is near 
Chengdu city, the capital of Sichuan, and between 103°29′–103°40′E 
and 31°11′–31°20′N. Wen-Du study area belongs to the temper-
ate humid climate zone. According to the yearbook released by 
the National Bureau of Statistics of China, in 2020 in Chengdu, 
the annual total precipitation is 1229.6 mm. The highest average 
monthly precipitation is 748 mm in August. This study area is 
located in the eastern edge zone of the Qinghai-Tibet Plateau. The 
elevation of the study area is 1029–4081 m, and the topography is 
predominated by mountains and deep valleys. The study area is on 
the east side of the Minjiang River and the west side of the Long-
men Mountain, situated in the compound part of the Minjiang fault 
zone and Longmen mountain fault zone. The tectonic movements 
and rainfalls promote the formation of the landslides in this area.

As presented in Fig. 1c, the second study area, Iburi in short, is 
located in Iburi of Hokkaido, Japan, with a total area of 412.88 km2. 
Iburi study area is between 141°53′–142°2´E and 42°41′–42°50′N, 
belonging to the temperate humid climate type. The study area is 
located in the frontal fold and thrust belt formed by the Hidaka 
Mountains, and the topography is predominated by low hills with 
the elevation of 16–449 m (Ozaki and Taku 2014; Zhang et al. 
2019). Due to the active tectonic movements, the Iburi region was 
hit by an Mw 6.6 magnitude earthquake on September 6th, 2018. 
Besides, the Iburi region experienced persistent rainfalls before the 
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earthquake. According to Zhang et al. (2019), from August 6th to 
September 6th, 2018, the cumulative precipitation almost reached 
300 mm. Thus, the prolonged rainfall and the intense ground shak-
ing resulted in the formation and sliding of thousands of land-
slides (Zhang et al. 2019).

Medium‑resolution images and reference landslide inventories

In this paper, we collected Sentinel-2 images and NASA Digi-
tal Elevation Model (NASADEM) data for landslide detection. 
Sentinel-2 is a multispectral imaging mission with a wide swath 
and a global 5-day revisit frequency. The Sentinel-2 imagery has 
13 bands of different spatial resolutions, with visible and near-
infrared bands at 10 m resolution, red edge bands, and short wave 
infrared bands at 20 m resolution, and atmospheric bans at 60 m 
resolution. The NASADEM data is reprocessed from the Shuttle 
Radar Topography Mission data (JPL 2020). The NASADEM is at 
30 m resolution.

Both Sentinel-2 and NASADEM data used in this study were 
freely collected and downloaded from Google Earth Engine using 
Python API and the GEEMap package (Wu 2020). In the Wen-Du 
study area, the rainy and cloudy weather in the mountainous region 
undermines the quality of optical images. Thus, we obtained the 
Sentinel-2 images collected in the summer half year (from March 
1st to September 1st) in 2020, filtered them to metadata with a cloud 
pixel percentage of less than 30%, and applied cloud masks on the 
filtered images. Then, we generated a composite image via mini-
mum values. The composite image has much better quality and 
fewer clouds than the single image. For the Iburi study area, we 
collected a Sentinel-2 image on August 6th, 2019 with the cloud 
pixel percentage less than 10%.

This study needed per-pixel reference landslide masks to train 
the further semantic segmentation network. For the Wen-Du study 
area, the multi-resolution segmentation method was performed by 
eCoginiton software on Sentinel-2 images to generate objects, and 
then the object-oriented visual interpretation was conducted to 

Fig. 1   Illustration of the study areas. a The locations of study areas, and the base map is the General Bathymetric Chart of the Oceans 
(GEBCO); b and c The zoom-ins of study areas, and the base map is ESRI World Aerial Imagery
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yield landslide masks. We further corrected the landslide masks 
with the help of Google Earth images. For the Iburi study area, we 
used the landslide database released by Zhang et al. (2019). The 
landslides covered an area of 13.35 km2 in the Wen-Du study area 
and an area of 66.02 km2 in the Iburi study area, respectively. The 
final reference landslide masks are binary data, of which “0” means 
background, and “1” denotes landslides. Figure 2 presents the Sen-
tinel-2 images with RGB synthesis and corresponding landslide 
masks used in this study.

Method

Data preparation
According to the workflow of data preparation presented in Fig. 3, 
we first conducted re-projection on the obtained composite Sen-
tinel-2 image and NASADEM data. The Sentinel-2 images and 

NASADEM data were re-projected by WGS 84/Pseudo-Mercator 
(ESPG: 3857) and resampled at 10 m resolution by the bilinear 
interpolation. The bilinear interpolation typically performs better 
than the nearest neighborhood method. Theoretically, higher-order 
interpolation methods, such as bi-cubic interpolation, may outper-
form the bilinear interpolation. However, considering both effec-
tiveness and efficiency, we do not use higher-order interpolation 
methods because we believe the bilinear interpolation is enough 
for our data pre-processing. We do not compare the effectiveness of 
different interpolation methods since this is not the key component 
of our model.

Following Ghorbanzadeh et al. (2022b), we selected B1, B2, 
B3, B4, B5, B6, B7, B8, B9, B10, B11, and B12 from the Sentinel-2 
imagery. Besides, we calculated the slope and aspect maps using 
the elevation data. Then, we totally collected 15 bands for land-
slide detection.

Fig. 2   Sentinel-2 images with RGB synthesis and ground truth landslide masks used in this paper
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Furthermore, we normalized the images to facilitate the pro-
posed network training. Also following Ghorbanzadeh et  al. 
(2022b), the bands were divided by a mean vector calculated from 
each channel to implement the normalization. The mean vector of 
the Wen-Du study area is 949.2088, 748.4695, 698.7444, 505.1842, 
787.3141, 1267.6893, 1410.2332, 1399.5855, 755.9013, 17.6443, 941.9830, 
557.1606, 30.8307, 2780.8990, and 175.2769, corresponding B1-B12, 
slope, elevation, and aspect. The mean vector of the Iburi study 
area is 1305.9524, 1018.6230, 914.6298, 670.2300, 955.5752, 2452.4155, 
3165.0302, 2990.8410, 590.5851, 31.6564, 1714.7940, 791.9665, 13.7373, 
162.7565, and 181.5565, corresponding B1-B12, slope, elevation, and 
aspect. The feature vector of pixels at each location is divided by the 
mean vector to generate the normalized feature vector.

As for the patch generation, we used a sliding window with the 
size of 128 × 128 pixels and a stride of 128 pixels to scan and clip the 
normalized data. Besides, corresponding label patches were obtained 
by scanning and clipping the per-pixel reference landslide masks.

Model building

In this paper, we propose a new landslide detection network, which 
is developed based on U-Net. As in Fig. 4, the proposed network 
consists of an encoding path and a decoding path, and a bridge 
connecting the encoding path and the decoding path. We design 
a dual-encoder architecture for jointly learning the deep semantic 
features in DEM data and optical bands and use a feature fusion 

strategy to integrate features in both encoders. In the decoding 
path, decoder blocks perform further optimization on features 
extracted by encoder blocks. The decoding part reconstructs spatial 
details of the targets layer by layer. A skip connection with an atten-
tion mechanism is used to fuse the output features of each decoder 
block with the output features of the corresponding encoder block. 
The network parameters are updated by jointly minimizing the 
cross-entropy loss with weights (Phan and Yamamoto 2020) and 
DICE loss (Milletari et al. 2016). Details of the proposed network 
are elaborated in the remaining part of this section.

Dual‑encoding path with feature fusion  In a deep semantic segmen-
tation network, an encoder basically consists of convolutional lay-
ers, activation functions, and pooling layers. The convolutional lay-
ers learn deep features from the input data via linear convolutional 
operations. The computed results of linear convolutional layers are 
further sent to an elementwise activation function, such as recti-
fied linear unit (ReLU) function to obtain feature maps. Parameters 
of convolution kernels are trainable and adaptively optimized by 
backward propagation. Pooling layers are used to down-sample fea-
ture maps in order to obtain high-level feature representation and 
reduce computational complexity. Commonly used pooling layers 
are maximum pooling and average pooling.

In the encoding path, we designed two encoders. One is the 
master encoder, consisting of four encoder blocks. The first 

Fig. 3   The workflow for data preparation
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encoder block of the master encoder contains two convolutional 
layers, and each of the followed three encoder blocks contains 
one pooling layer and two convolutional layers. Another encoder 
is the companion encoder, consisting of three encoder blocks. 
Each of the first two encoder blocks of the companion encoder 
has two convolutional layers and one pooling layer, while the 
third encoder block of the companion encoder only has two 
convolutional layers. Optical bands of the Sentinel-2 data are 
the input data of the master encoder, and DEM data is input to 
the companion encoder. Maximum pooling layers were used to 
aggregate deep information extracted by convolutional layers.

Meanwhile, features extracted from the two encoders are fused 
layer by layer. Specifically, feature maps from the corresponding 
encoder blocks respectively of the master encoder and the com-
panion encoder were concatenated as the input of the next encoder 
block of the main encoder. The fusion strategy at the feature level 
helps to improve the feature expression capability and consistency 
of the network. The process of generating a feature map along the 
data flow in the master encoder is described as Eq. (1):

where δ,ϑ denote the master encoder and the companion encoder, 
respectively; l  is the serial number of the encoder block; m is the 
size of the feature map; d(l) is the number of channels of the output 
feature map; H�,l ∈ ℝ

m×m×d(l) is the output feature map which is 
updated by the l  th encoder block of δ , while H�,l−1 ∈ ℝ

2m×2m×d(l−1) 
is the output feature map calculated by the last encoder block of 
δ , and H�,l−1 ∈ ℝ

2m×2m×d(l−1) is the output feature map calculated 
by the last encoder block of ϑ . ∥ represents feature concatena-
tion. W�,1 ∈ ℝ

d(l)×2d(l−1) and W�,2 ∈ ℝ
d(l)×d(l) are trainable param-

eter matrixes. BN  denotes batch normalization, σ(⋅) denotes the 
activation function, and MaxPool2×2(⋅) is the maximum pooling 
operation.

The feature map generated by an encoder block in the com-
panion encoder is computed as:

(1)
H�,l = σ

(

BN
(

W�,2

(

�
(

BN
(

W�,1

(

MaxPool2×2
(

H�,l−1 ∥ H�,l−1

)))))))

(2)H�,l = MaxPool2×2

(

σ
(

BN
(

W�,2

(

σ
(

BN
(

W�,1H�,l−1

))))))

Fig. 4   The architecture of the proposed network for landslide detection using multiple optical bands and DEM data
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where H�,l ∈ ℝ
m×m×d(l) is the output feature map, H�,l−1 ∈ ℝ

2m×2m×d(l−1)  
is the input feature map, and W�,1 ∈ ℝ

d(l)×d(l−1) and W�,2 ∈ ℝ
d(l)×d(l) 

represent trainable parameter matrixes of the convolution layers of 
the encoder blocks. Besides the master encoder and the companion 
encoder, a bridge consisting of a maximum pooling layer, two convo-
lution layers, and one up-sample layer is used to connect the encoding  
path and the decoding path.

Decoding path with attention  A decoder commonly consists of up-
sample layers and convolution layers. Up-sample layers resize the 
feature maps from the encoder, and then the resized feature maps 
are optimized by convolution layers. By stacking up-sample layers 
and convolution layers, the decoder reconstructs and highlights the 
object in the images. The proposed network contains four decoder 
blocks, and each decoder block has one up-sample layer and two con-
volutional layers to update features and adjust the number of feature 
channels. In the final decoder block, a 1 × 1 convolution layer is used to 
map classification results. At last, a feature vector with the length of the 
number of categories is generated at each pixel location.

U-shape networks universally adopt skip connection to use con-
catenation operation to fuse the features generated by the encoder 
and decoder at the same level, so that the decoder can retain more 
high-resolution details after up-sampling the feature maps. This study 
adopts a self-attention module proposed by Oktay et al. (2018) in the 
skip connection to fuse features better and to fascinate the model to 
focus on target information and inhibit useless background informa-
tion. Figure 5 illustrates the self-attention mechanism.

In Fig. 5, X represents the up-sampled feature map from the 
decoder block; H represents the feature map from the correspond-
ing encoder block; m is the size of feature maps; d_h and d_x denote 
the numbers of feature channels of H and X ; d_int and d_out denote 
the numbers of intermediate feature channels and the output feature 
channels. H and X are first updated by 1 × 1 convolutional layers. Then 
the obtained feature maps are element-wise added together. The gen-
erated intermediate feature map is fed into another 1 × 1 convolutional 
layer to generate attention coefficients P . Furthermore, the input X is 
multiplied with P . Finally, the updated X with attention and the input 
H are concatenated to generate the output feature map.

Loss function  The proposed network is trained with the joint loss 
function L . L integrates weighted cross entropy loss function L

WCE
 

and Dice loss function L
Dice

 . The cross entropy function is easy to 
optimize while the Dice loss function aims to solve the problem of 
strong class imbalance. The integrated loss function L takes both 
advantages of cross entropy loss and Dice loss. L is computes as:

where � ∈ [0, 1] is a balance parameter. The weighted cross entropy 
loss is a variant of cross entropy loss (Phan and Yamamoto 2020), 
which is calculated as:

where N  denotes the number of training samples, K  denotes the 
number of classes, �k is the weight value set for the k th class, yn is 
the one-hot label of the n th sample, and ŷn is the prediction of the 
n th sample. Weighted cross-entropy is useful for mitigating the 
problem of class imbalance (Phan and Yamamoto 2020).

Dice loss, originally from the Dice coefficient, was initially 
designed for the situation of strong class imbalance (Milletari et al. 
2016). A Dice coefficient ranging between 0 and 1 is used to evaluate 
the similarity between two samples. Dice loss LDice is computed as:

Performance assessment

We compute precision, recall, and F1 score (F1) to evaluate the per-
formance of the proposed model. The three indexes are defined as:

(3)L = (1 − �)LWCE + αLDice

(4)LCE = −
1

N

N
�

n=1

K
�

k=1

�kynlog
exp

�

ŷn
�

∑K

j=1
exp

�

ŷn
�

(5)LDice = 1 −

2

�

∑N

n=1
ynŷn

�

∑N

n=1
yn +

∑N

n=1
ŷn

(6)precision =
TP

TP + FP

Fig. 5   Skip-connection with the self-attention module
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where TP is the number of true positives, i.e., pixels classified as 
landslides correctly; TN is the number of true negatives, i.e., pix-
els classified as backgrounds correctly; FP is the number of false 
positives, i.e., ground truth background pixels misclassified as 
landslides; FN is the number of false negatives, i.e., ground truth 
landslide pixels misclassified as backgrounds. Precision indicates 
the proportion of correctly classified landslide pixels from the pre-
dicted landslides. Recall indicates the proportion of correctly classi-
fied landslide pixels from ground truth landslides. F1 is regarded as 
the harmonic mean of precision and recall and can balance between 
precision and recall.

Experiments and results

Experimental settings
In this study, 210 and 252 image patches were generated for the 
Wen-Du study area and the Iburi study area, respectively. During 
model training, the image patches were randomly divided into the 
training set and the test set by the ratio of 7:3 in each study area. For 
the Wen-Du study area, 147 image patches were used for training 
and 63 for testing, while 176 image patches were for training and 
76 for testing in the Iburi study area. Data augmentation, including 

(7)recall =
TP

TP + FN

(8)F1 =
2 × precsion × recall

precsion + recall

random left–right flip and up-down flip, was performed on training 
sets for improving the robustness.

The output dimension of the model is set to 2. In terms of the 
weighted cross-entropy loss, the weight parameters for background 
and landslide, i.e., �1 and �2 , were set to 0.5 and 1.0, respectively. 
The balance parameter of the joint loss function, i.e., � was set to 
0.6. Adam was chosen as the model optimizer with a learning rate 
of 1e-3 and weight decay of 5e-4. The mini-batch size is 16. All the 
experiments were trained for 150 epochs. We also performed Seg-
Net, U-Net, and Attention U-Net on the same study areas for com-
parison. All models were trained from scratch without using any 
pre-trained models.

Our experiments were implemented using PyTorch. All experi-
ments were conducted on a personal computer equipped with an 
Intel core Xeon(R) Silver 4210R and NAVIDIA GeForce RTX 3090 
GPU with 24 GB memory.

Description of processed data

Figure 6 presents 10 image patches that are preprocessed from Sen-
tinel-2 images and DEM data as depicted in the “Data preparation” 
section. In Fig. 6, the first four rows represent four image patches 
in the Wen-Du study area, and the last six are from the Iburi study 
area. Each layer is in the size of 128 × 128 pixels. Bands B1-B12 are 
from the Sentinel-2 data. Bands B13-B15 are slope, elevation, and 
aspect calculated from DEM data, respectively. The mask is the 
ground truth of landslides.

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 Mask

Fig. 6   Examples in the study areas of the processed data



Landslides

The dataset used in this paper has a strong class imbalance. In 
the training set of the Wen-Du study area, landslide pixels take up 
4.44% of total pixels while in its test set, landslide pixels take up 
3.03%. In the training set of the Iburi study area, landslide pixels 
take up 16.10% of total pixels while in its test set landslide pixels 
take up 15.73%. Thus, landslide detection is difficult in the Wen-Du 
study area due to the small volume of positive samples.

Experimental results

As presented in Table 1, our proposed network achieved the best 
landslide detection results according to the quantitative compari-
sons. Specifically, the proposed network achieved promising preci-
sion and recall scores, i.e., 68.05% and 70.36%, respectively, as well 
as keeping a good balance between the precision and recall. Among 

all of the comparison networks, SegNet generated the lowest preci-
sion and recall scores, indicating the high fraction of false positives 
and false negatives produced by SegNet. U-Net obtained the highest 
precision score, though it generated a relatively low recall score 
of 62.99%, which demonstrated that a large fraction of landslide 
pixels was wrongly classified as non-landslide pixels in the pre-
diction produced by U-Net. Attention U-Net achieved the highest 
recall score, though it generated a relatively low precision score of 
63.20%, indicating a large fraction of non-landslide pixels wrongly 
categorized as landslides in the predicted results. In addition, the 
proposed network obtained the highest F1 score of 69.18%, exceed-
ing the second-highest F1 score generated by Attention U-Net by 
2.14%. Figure 7 presents the results of four regions of the Wen-
Du study area. In the figure, black indicates the background, red 
indicates true positives, cyan indicates false negatives, and yellow 
indicates false positives.

The quantitative comparisons in Table 2 also demonstrate that 
our network obtained the best classification results in the Iburi 
study area. The proposed network achieved the highest F1 value by 
79.24%, exceeding SegNet, U-Net, and Attention U-Net by 5.57%, 
2.66%, and 1.95%. Moreover, the proposed network kept a great 
balance between the precision and the recall, with the difference 
between the two indexes of 1.72%. Among the networks in Table 2, 
SegNet obtained the second-highest recall score but the lowest 
precision score, which demonstrated that SegNet generated a large 
number of false positives. In contrast, U-Net obtained the highest 

Table 1   Quantitative results (%) in the Wen-Du study area

Model Precision Recall F1-score

SegNet 46.84 52.15 49.35

U-Net 68.45 62.99 65.60

Att U-Net 63.20 71.37 67.04

Proposed Network 68.05 70.36 69.18

Fig. 7   Landslide detection results generated by our network, SegNet, U-Net, and Attention U-Net in 4 regions of the Wen-Du study area



Landslides

Technical Note

precision value but the lowest recall value, with the difference 
between the two indexes of 12.28%. Attention U-Net obtained the 
precision score of 82.50% and the recall score of 72.69%, with the 
difference between the two indexes of 9.81%. Generally considering 

the precision, the recall, and the overall accuracy, our proposed 
network achieved the best performance for detecting landslides in 
Iburi. Figure 8 presents the predicted results in 7 regions of Iburi.

Discussion

Comparison between the proposed network and previous work
In this paper, we obtained satisfactory results on landslide detection 
using free-access Sentinel-2 imagery and NASADEM data. Com-
pared with studies using the toll-access with < 10 m resolution (Yi 
and Zhang 2020; Chen et al. 2021a, b; Liu et al. 2021a; Yang et al. 
2022), our method is easier and has more potential to deploy in the 
future large-scale landslide detection tasks. It is worth noting that 
our method obtained the F1 score of 79.24% in the Iburi study area, 
and Yang et al. (2022) obtained an F1 of 79.33% using Planet imagery 

Table 2   Quantitative results (%) in the Iburi study area

Model Precision Recall F1-score

SegNet 71.67 75.57 73.57

U-Net 83.21 70.93 76.58

Att U-Net 82.50 72.69 77.29

Proposed Network 78.39 80.11 79.24

Fig. 8   Landslide detection results generated by our network, SegNet, U-Net, and Attention U-Net in 6 regions of the Iburi study area
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of 3 m spatial resolution in the same study area. The small differ-
ence between the two demonstrated that our method performs well 
in landslide detection using medium-resolution and multi-spectral 
imagery and DEM data.

Previous studies (Ghorbanzadeh et al. 2021, 2022b; Bragagnolo 
et al. 2021) generally committed to explore the feasibility of deep 
learning models originating from the compute vision domain on 
landslide detection using medium resolution imagery. This study, in 
contrast, proposed a new network for landslide detection. The pro-
posed network was proved to outperform the popularly used SegNet, 
U-Net, and Attention U-Net. In the Wen-Du study area, our model 
achieved an F1 score of 69.18%, which exceeded SegNet, U-Net, and 
Attention U-Net by 19.83%, 3.58%, and 2.14%. In the Iburi study 
area, our model achieved an F1 score of 79.24%, which exceeded the 
three comparison models by 5.67%, 2.66%, and 1.95%. Besides, our 
method kept a good balance between precision and recall.

In this study, we designed a dual-encoder architecture to extract 
high-level semantic features from optical bands and DEM data, 
respectively. We also introduced a self-attention module into the 
decoder. Compared with Attention U-Net, our method obtained 
better detection accuracies, which verified the effectiveness of our 
dual-encoder architecture.

Limitations, challenges, and future work

Deep learning models usually require a large number of training 
samples to improve robustness. Actually, research on landslide 
detection based on remote sensing is hampered by the lack of 
ground truth data, the arduous acquisition of accurate samples, 
and class imbalance. Researchers often need to expend consider-
able effort and resources on manual interpretation or field surveys 
to obtain accurate labeling data for model training. This study 
obtained 147 and 176 image patches in the size of 128 × 128 pixels for 
model training, which are actually relatively small training sets for 
deep learning. According to the experimental results, our method 
is impacted by the limited training samples and strong class imbal-
ance. We performed data augmentation and modified the loss func-
tion for model training to alleviate the above issues, though. Thus, 
in the future, more accurate samples are needed for larger-range 
landslide detection. Other learning schemes, such as transfer learn-
ing and meta learning, are also worth exploring for landslide map-
ping using a few samples. Besides, limited by the paper length, we 
do not clarify the different contributions of each band to landslide 
detection. In our future study, it is necessary indeed to perform an 
ablation analysis on different Sentinel-2 bands.

Conclusion
In this paper, we proposed a semantic segmentation-based approach 
for landslide detection using Sentinel-2 imagery and DEM data. The 
main contributions of this study lie in that (1) we developed a method 
using medium-resolution remotely sensed imagery and DEM data 
to achieve accurate landslide mapping, which has the potential to 
deploy on large-scale landslide detection, and (2) the proposed 
method is per-pixel and end-to-end and outperforms the universally 
used SegNet, U-Net, and Attention U-Net in our study area.

In this paper, Sentinel-2 imagery and DEM data were preproc-
essed first to generate image patches for model training. Then we 

designed a dual-encoder U-Net with a self-attention module for 
landslide detection. The proposed network has two encoders, a 
main encoder to learn deep features from optical bands and a 
companion encoder to learn deep features from DEM data. The 
features learned by two encoders were fused. The decoder part 
of our network used a skip connection with an attention gate in 
order to suppress background information and pay more atten-
tion to target information.

We conducted experiments in the Wen-Du study area and the 
Iburi study area by comparing our network with SegNet, U-Net, 
and Attention U-Net. The quantitative evaluations showed that 
our network reached 69.18% of F1 in Wen-Du and 79.24% of 
F1 in Iburi. In both study areas, our network outperformed the 
compared networks. Moreover, qualitative comparisons of clas-
sification results generated by different networks also verify the 
effectiveness of the proposed network. Limited by bottlenecks 
including small sample size and class imbalance, the proposed 
network has only been experimented on in two study areas. 
Conducting more extensive landslide detection studies in the 
future will pose a greater challenge to the construction of the 
ground truth database. Future research on larger-scale, busi-
ness-oriented landslide detection will pose greater challenges to 
the construction of landslide databases and the design of deep 
learning models.
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